RoboBrain:智源开源具身大脑模型,32B参数实现跨机器人协作

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发感兴趣,我会每日分享大模型与 AI 领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!

🥦 AI 在线答疑 -> 智能检索历史文章和开源项目 -> 丰富的 AI 工具库 -> 每日更新 -> 尽在微信公众号 -> 搜一搜:蚝油菜花 🥦


🤖 “机器人集体觉醒?开源大脑模型让机械臂学会「团队协作」,32B参数碾压GPT-4”

大家好,我是蚝油菜花。当单个机器人还在为抓取动作反复调试时,这个国产开源模型已经让机器人群落实现「思维同步」!

你是否经历过这些自动化困局:

  • 🏗️ 工业流水线上多机械臂配合总慢半拍
  • � 让机器人执行「倒水」指令,结果壶嘴对不准杯口
  • 📦 仓库分拣系统遇到新货品就集体「死机」…

今天要解剖的 RoboBrain ,正在重写群体智能规则!这个由智源研究院打造的具身大脑,用三大黑科技让机器人学会「团队作战」:

  • 任务拆解大师:把「整理货架」自动分解为20+精细动作
  • 物体交互读心术:精准识别茶壶把手/抽屉轨道等可操作区域
  • 轨迹预测先知:提前3秒预判机械臂运动路径碰撞风险

已有工厂用它协调百台AGV小车,文末附《多机器人协作调参指南》——你的自动化产线准备好迎接「蜂群智能」了吗?

🚀 快速阅读

RoboBrain是首个实现跨本体协作的开源具身大脑模型。

  1. 功能:集成任务规划、可操作区域感知和轨迹预测三大核心能力
  2. 原理:基于LLaVA框架,采用SigLIP视觉编码器和Qwen2.5-7B大模型

RoboBrain 是什么

RoboBrain

RoboBrain是由智源研究院开发的开源具身大脑模型,旨在推动单机智能向群体智能演进。该模型通过模块化设计,将复杂的机器人操作任务分解为可执行的子步骤,实现从抽象指令到具体动作的精准映射。

其核心创新在于采用多阶段训练策略,结合大规模通用视觉数据和专用机器人数据集ShareRobot进行优化。这种训练方式使模型同时具备长时序记忆能力和高分辨率图像理解能力,在工业流水线、仓储物流等需要多机协作的场景中表现尤为突出。

RoboBrain 的主要功能

  • 任务规划:将"整理货架"分解为"识别物品→抓取→分类放置"等子任务
  • 可操作区域感知:自动识别门把手、按钮等交互部件的有效接触区域
  • 轨迹预测:生成机械臂运动路径时自动避障,成功率提升63%

RoboBrain 的技术原理

  • 三模块架构:基座模型处理任务规划,A-LoRA模块负责可操作区域感知,T-LoRA模块预测运动轨迹
  • 视觉编码器:采用SigLIP模型提取图像特征,支持3840×2160超高分辨率输入
  • 多阶段训练:先在通用数据集预训练,再用ShareRobot数据集微调机器人专项能力

如何运行 RoboBrain

1. 环境配置

git clone https://github.com/FlagOpen/RoboBrain.git
conda create -n robobrain python=3.10
pip install -r requirements.txt

2. 规划任务推理

from inference import SimpleInference
model = SimpleInference("BAAI/RoboBrain")
pred = model.inference("整理货架步骤", "warehouse.jpg")

3. 可操作区域预测

model.load_lora("BAAI/RoboBrain-LoRA-Affordance")
affordance = model.inference("门把手可操作区域", "door.jpg")

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发感兴趣,我会每日分享大模型与 AI 领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!

🥦 AI 在线答疑 -> 智能检索历史文章和开源项目 -> 丰富的 AI 工具库 -> 每日更新 -> 尽在微信公众号 -> 搜一搜:蚝油菜花 🥦

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值