Clementine数据挖掘软件使用

本文介绍了如何使用K-Means算法进行数据聚类,并详细解释了如何设置参数以调整离散型数据的重要性,通过实例演示了如何评估聚类效果及解读训练后的模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数据挖掘


K-Means聚类

可变文件导入数据文件,Demo里面中有例子
在这里插入图片描述
设置可变文件,有head,把它标上
在这里插入图片描述
双击类型,字段改为输出后,聚类将不使用该项
在这里插入图片描述
接入K-means模型,执行,在右侧右键黄色模型的图标预览训练好的模型
在这里插入图片描述
专家中可以高级设置其中
集合编码值=0.70711=2分之根号2
数值型属性转为01的序列,相同为1 不同为0,
集合编码值调高了说明离散型比数值型更重要
在这里插入图片描述
调成2后,发现离散型的BP重要程度变为1,每个聚类中没有重复的类别
在这里插入图片描述
默认情况,聚类1和3就啥类型都有,所以集合编码值可以调节离散型数据的重要程度
在这里插入图片描述

分析训练好的模型,后面接一个表
在这里插入图片描述
多了一个KM-K-Means字段,显示记录被划分到哪一个簇中
在这里插入图片描述
在这里插入图片描述
选择想看的簇,如我只想看聚类1
在这里插入图片描述
表中查看就都是聚类1了
在这里插入图片描述
Kohonen在这里插入图片描述
K-means
在这里插入图片描述

两步聚类算法

归并方差变大,归并不好,方差较小较为合适。

K-Means与两步聚类算法真正比较簇内差别?
在这里插入图片描述

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值