数据挖掘
K-Means聚类
可变文件导入数据文件,Demo里面中有例子
设置可变文件,有head,把它标上
双击类型,字段改为输出后,聚类将不使用该项
接入K-means模型,执行,在右侧右键黄色模型的图标预览训练好的模型
专家中可以高级设置其中
集合编码值=0.70711=2分之根号2
数值型属性转为01的序列,相同为1 不同为0,
集合编码值调高了说明离散型比数值型更重要
调成2后,发现离散型的BP重要程度变为1,每个聚类中没有重复的类别
默认情况,聚类1和3就啥类型都有,所以集合编码值可以调节离散型数据的重要程度
分析训练好的模型,后面接一个表
多了一个KM-K-Means字段,显示记录被划分到哪一个簇中
选择想看的簇,如我只想看聚类1
表中查看就都是聚类1了
Kohonen
K-means
两步聚类算法
归并方差变大,归并不好,方差较小较为合适。
K-Means与两步聚类算法真正比较簇内差别?