每日论文20240219:Attention is all you need

提到大模型,Transformer是最核心的创新点,讲解Transformer的博文不少,但是,我还是想从个人视角,基于Attention is all you need这篇论文,讲解Transformer。

摘要

作者提到,针对sequence transduction的任务,CNN和RNN还是主要的模型组成部分,而目前性能最好的方案添加了attention机制。 作者进一步提出了transoformer,一个完全基于注意力机制的由编码器,解码器组成的单一网络。

证明这一网络架构优越性的就是它在WMT 2014 English-to-French translation (英法翻译)任务中,刷新了最好成绩。

读完abstract,我的认知是,这篇论文不是提出了attention机制,而是证明不依赖CNN,RNN,基于attention机制构造网络,单枪匹马,可以取得令人震惊的效果。

介绍

RNN,LSTM是机器翻译领域常用的网络结构,但是RNN无法有效的支持并行化,这让它处理长序列的句子非常有挑战。此前,attention机制在RNN网络中充当着辅助的角色,但是,本文证明,它可以“独档一面”。

背景

针对RNN的序列计算量太大的问题,一些工作尝试通过CNN解决,但是随着序列长度的增加,还是遇到序列距离较远,计算量大,相互关系的学习能力受限。但是,在transformer中,计算量被降低为常数。

In the Transformer this is reduced to a constant number of operations, albeit at the cost of reduced effective resolution due to averaging attention-weighted positions,

然后,作者引出self-attention的介绍

Self-attention, sometimes called intra-attention is an attention mechanism relating different positions of a single sequence in order to compute a representation of the sequence.

接着再强调一下transformer有多牛。

To the best of our knowledge, however, the Transformer is the first transduction model relying entirely on self-attention to compute representations of its input and output without using sequencealigned RNNs or convolution. In the following sections, we w

这里其实有点奇怪,难道在作者心中,self-attetnion的重要性远高于multi-head attention?

Model architecture

关于模型结构的介绍,作者强调transformer依旧遵循encoder-decoder的设计框架,将输入序列进行映射成连续序列,然后再解码生成新的序列,并且还会基于此前生成的符号,作为生成下一输出的额外输入。

model is auto-regressive [10], consuming the previously generated symbols as additional input when generating the next.

Transformer由若干个自注意力层和全连接层组成。

在这张图中,通过input embedding,词转换为向量,

解码器和编码器

编码器由6个相同的层组成,每个层包含2个子层,其中,第一层使用了多头注意力机制,第二个是全连接层 (fully connected feed-forward network), 此外,进过残差链接后,layernrom被使用。

batch norm:   将特定特征在mini batch中的均值和方差调整为0。 而layernorm是吧每一个样本调整为均值为0,方差为1。

在解码器中,可以看到相比于编码器,多了一个Masked-multi-head attention模块,它的作用在于隐藏未来信息,并对于编码器输出进行多头注意力操作。

scaled-dot-product attention

关于这个注意力机制的解释,最好的就是这个公式,针对每一个query,通过和Key进行点乘,得到每一个value的权重,再和value相乘,最后的输出是多个value的混合,混合中每个value的比例取决于query和Key的相似度。

当然,上述的过程中没有softmax以及dk的介绍,但这对应的也都是公式化的变换。总之,该过程,实际上只使用了两次矩阵乘法。

其中,这里作者之所以称这种方法为scaled。就是因为它除以了dk。

此外,为了保证t时刻的query只和此前时刻的key建立联系,我们使用了mask来屏蔽t时刻之后的key。

TODO: add  image

Mulit-head attention

值得注意的是,上述流程其实没有很多可以学习的参数,因此参考卷积层多个通道,这里设计了多头注意力机制,通过进行QKV的线性映射,我们可以在更丰富的向量空间进行参数学习。

在transoformer中,包含了三个多头注意力模块,分别位于编码器,解码器,以及编码器和解码器的连接处。

其中编码器和解码器的注意力模块中,QKV一致。而在编码器和解码器的连接处,key和value来自编码器,query来自解码器的输入。它的目的就是有效获取编码器中的输出。

RNN和transoformer的处理时序信息的方式。

positional encoding

为了保证网络把输入的相对位置关系,我们需要将位置信息输入网络。通过不同频率的sin和cos信息,我们进行位置编码。

为什么使用自注意力机制?

作者提到使用自注意力机制的三个原因。一是自注意力机制每一层的计算复杂度较小,二是自注意力机制有利于序列操作的并行化。三是,长序列中元素相互关系连接的路径较短。而学习长序列的相互依赖关系是这类问题的关键。

  • 26
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
牙科就诊管理系统利用当下成熟完善的SSM框架,使用跨平台的可开发大型商业网站的Java语言,以及最受欢迎的RDBMS应用软件之一的Mysql数据库进行程序开发。实现了用户在线查看数据。管理员管理病例管理、字典管理、公告管理、药单管理、药品管理、药品收藏管理、药品评价管理、药品订单管理、牙医管理、牙医收藏管理、牙医评价管理、牙医挂号管理、用户管理、管理员管理等功能。牙科就诊管理系统的开发根据操作人员需要设计的界面简洁美观,在功能模块布局上跟同类型网站保持一致,程序在实现基本要求功能时,也为数据信息面临的安全问题提供了一些实用的解决方案。可以说该程序在帮助管理者高效率地处理工作事务的同时,也实现了数据信息的整体化,规范化与自动化。 管理员在后台主要管理病例管理、字典管理、公告管理、药单管理、药品管理、药品收藏管理、药品评价管理、药品订单管理、牙医管理、牙医收藏管理、牙医评价管理、牙医挂号管理、用户管理、管理员管理等。 牙医列表页面,此页面提供给管理员的功能有:查看牙医、新增牙医、修改牙医、删除牙医等。公告信息管理页面提供的功能操作有:新增公告,修改公告,删除公告操作。公告类型管理页面显示所有公告类型,在此页面既可以让管理员添加新的公告信息类型,也能对已有的公告类型信息执行编辑更新,失效的公告类型信息也能让管理员快速删除。药品管理页面,此页面提供给管理员的功能有:新增药品,修改药品,删除药品。药品类型管理页面,此页面提供给管理员的功能有:新增药品类型,修改药品类型,删除药品类型。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值