解决spark多输入路径中,存在个别路径文件为空时报错的方法

在Spark开发中,遇到多输入路径含有空目录导致任务报错的问题。通过分析FileInputFormat类的报错代码,发现在文件为空时抛出异常。为解决此问题,可以重写FileInputFormat类的textFile方法,避免空目录引发的异常,从而确保任务正常运行。
摘要由CSDN通过智能技术生成

在spark开发过程中,当输入路径为多个时,用逗号(,)来拼接路径,但是有时候会遇到,多个输入目录有个别路径下没有文件,这时候提交任务,会直接报错,job不能运行

解决问题:
1、根据报错信息找到相应代码,报错信息如下

    Input Pattern ***** matches 0 files

代码位置:FileInputFormat类151行

	Path p = arr$[i$];
	FileSystem fs = p.getFileSystem(job);
	FileStatus[] matches = fs.globStatus(p, inputFilter);
	if (matches == null) {
   
		errors.add(new IOException("Input path does not exist: " + p));
	} else if (matches.length == 0) {
   
		errors.add(new IOException("Input Pattern " + p + " matches 0 files"));
	} else {
   

可以看到输入的路径文件为null时,抛出异常没问题,但是输入的文件为空时,同样抛出了异常,去掉这个异常即可正常运行。

修改方法:
重写FileInputFormat类

import com.google.common.base.Charsets;
import com.google.common.base.Stopwatch;
import com.google.common.collect.Iterables;
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.apache.hadoop.classification.InterfaceAudience;
import org.apache.hadoop.classification.InterfaceStability;
import org.apache.hadoop.fs.*;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.compress.CompressionCodec;
import org.apache.hadoop.io.compress.CompressionCodecFactory;
import org.apache.hadoop.io.compress.SplittableCompressionCodec;
import org.apache.hadoop.mapred.*;
import org.apache.hadoop.mapreduce.security.TokenCache;

import java.io.IOException;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;


@InterfaceAudience.Public
@InterfaceStability.Stable
public class EmptiableTextInputFormat extends FileInputFormat<LongWritable
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值