Java实现LRU算法(线程安全)

本文介绍了一种使用Java实现的线程安全LRU缓存算法,详细解释了LRU缓存的基本原理,包括固定缓存大小、刷新使用时间和淘汰最近最少使用的缓存策略。文章深入探讨了使用HashMap和链表结合的实现方式,以及为何需要额外的header和tailer节点,以优化操作的时间复杂度。
摘要由CSDN通过智能技术生成

LRU原理

LRU缓存的思想:
1、固定缓存大小,需要给缓存分配一个固定的大小。
2、每次读取缓存都会改变缓存的使用时间,将缓存的存在时间重新刷新。
3、需要在缓存满了后,将最近最久未使用的缓存删除,再添加最新的缓存。

算法实现的思路

使用HashMap和链表来实现,链表用于存储我们缓存的节点,Map存储所有的节点,当需要淘汰一个节点的时候,只需要删除链表的尾部节点同时删除Map中的数据。
1、新数据插入到链表头部;
2、每当缓存命中(即缓存数据被访问),则将数据移到链表头部;
3、 当链表满的时候,将链表尾部的数据丢弃。

若干疑问解答

1、有了链表为什么还需压Map?

空间换时间的思想。
第一:我们在get缓存的时候从Map中获取的时候基本上时间复杂度控制在O(1),如果从链表中一次遍历的话时间复杂度是O(n)。
第二:我们访问一个已经存在的节点时候,需要将这个节点移动到header节点后,这个时候需要在链表中删除这个节点,并重新在header后面新增一个节点。这个时候先去Map中获取这个节点删除节点关系,避免了从链表中遍历,将时间复杂度从O(N)减少为)O(1)

2、为什么需要header和tailer节点

根据我们前面的设计,所有被访问的节点都需要放在链表最前面,缓存淘汰的时候删除最后的节点,header节点方便新增节点(我们采用头插法增加节点),tailer节点方便缓存淘汰,避免遍历从头到尾遍历

代码

代码片.

import java.util.HashMap;
import java.util.Map;
import java.util.concurrent.locks.ReadWriteLock;
import java.util.concurrent.locks.ReentrantReadWriteLock;

/**
 * @author rewnei2
 * @version v0.1 2019/4/15 17:29
 */
public class LRU<K, V> {
    private ReadWriteLock lock = new ReentrantReadWriteLock();
    private int cacheSize;

    private Map<K, Node<K>> caches;

    /**
     * 节点的大小
     */
    private int size;

    /**
     * 头节点
     */
    private Node<K> header;

    /**
     * 尾部节点
     */
    private Node<K> tailer;

    public LRU(int cacheSize) {
        this.cacheSize = cacheSize;
        this.caches = new HashMap<>();
        header = new Node<K>(null, null, null);
        tailer = new Node<K>(null, header, null);
        header.next = tailer;
    }

    public void put(K key) {
        lock.writeLock().lock();
        try {
            Node<K> node = caches.get(key);
            if (node == null) {
                if (caches.size() >= cacheSize) {
                    deleteTail();
                }
                addToHead(key);
            } else {
                //删除已经存在的节点数据
                deleteNode(node);
                addToHead(node.data);
            }
        } finally {
            lock.writeLock().unlock();
        }

    }

    public K get(K key) {
        lock.writeLock().lock();
        try {
            Node<K> node = caches.get(key);
            if (node == null) {
                return null;
            }
            deleteNode(node);
            addToHead(key);
            return key;
        } finally {
            lock.writeLock().unlock();
        }
    }

    static class Node<K> {
        /**
         *
         */
        public Node<K> pre;

        public Node<K> next;

        public K data;

        public Node(K data, Node<K> pre, Node<K> next) {
            this.data = data;
            this.pre = pre;
            this.next = next;
        }

        @Override
        public String toString() {
            return "Node{" +
                    "data=" + data +
                    '}';
        }
    }


    /**
     * 头尾保持两个空的header和tail节点,头插法增加节点并且增加cache中数据
     *
     * @param key
     */
    public Node<K> addToHead(K key) {
        Node<K> node = new Node<>(key, null, null);
        Node<K> nextNode = header.next;
        node.next = nextNode;
        nextNode.pre = node;
        node.pre = header;
        header.next = node;
        size++;
        caches.put(key, node);
        return node;
    }

    /**
     * 删除链表的中间节点的节点信息
     *
     * @param target
     */
    public void deleteNode(Node<K> target) {
        Node<K> preNode = target.pre;
        Node<K> nextNode = target.next;
        preNode.next = nextNode;
        nextNode.pre = preNode;
        target.pre = null;
        target.next = null;
        size--;
    }


    /**
     * 删除尾部节点同时删除缓存中的数据
     */
    public void deleteTail() {
        Node lastNode = tailer.pre;
        if (lastNode == header) {
            return;
        }
        Node<K> preNode = lastNode.pre;
        preNode.next = tailer;
        tailer.pre = preNode;
        lastNode.pre = null;
        lastNode.next = null;
        size--;
        caches.remove(lastNode.data);
    }

    public void print() {
        lock.readLock().lock();
        try {
            Node<K> current = header.next;
            StringBuffer sb = new StringBuffer();
            while (current != tailer) {
                sb.append(current.data + " ");
                current = current.next;
            }
            System.out.println("size=" + size + ";cache size="+caches.size()+"当前的链表数据有:" + sb.toString());
        } finally {
            lock.readLock().unlock();
        }

    }

    public static void main(String[] args) {
        LRU<String, String> lru = new LRU<>(4);
        //DoubleLink<String> doubleLink = new DoubleLink<>();
        Thread thread = new Thread(new Runnable() {
            @Override
            public void run() {
                lru.put("1");
                try {
                    Thread.sleep(1);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                lru.put("2");
                lru.print();
                lru.put("3");
                lru.print();
                lru.get("2");
                lru.put("4");
                //System.out.println(doubleLink.size);
                lru.print();
                lru.put("5");
                lru.print();
                lru.put("6");
                lru.print();
                lru.put("7");
                lru.put("8");
                lru.put("9");
            }
        });
        Thread thread1 = new Thread(new Runnable() {
            @Override
            public void run() {
                lru.put("11");
                try {
                    Thread.sleep(3);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                lru.put("12");
                lru.get("12");
                lru.put("13");
                lru.get("13");
                lru.print();
                lru.put("14");
                //System.out.println(doubleLink.size);
                lru.print();
                lru.put("15");
                lru.print();
                lru.put("16");
                lru.print();
                lru.put("17");
                lru.put("18");
                lru.put("19");
            }
        });
        thread.start();
        //thread1.start();
    }
}

后记

由于本人水平有限,本文难免有不足的地方,请各位批评指正。

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值