动态规划(DP)的原理、实现及应用

1. 由一个例子说开: 斐波那契(fibonacci)数列

斐波那契数列是由0和1开始,之后的数就是前两个数的和。
首几个费波那契系数是:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233……
那我们如何用计算机来生成这些数呢,也就是说,求斐波那契数列第n位的值。
很简单,用递归就可以了:

# 自上而下地递归
def fib(n):
    if n in [0,1]:
        return n
    return fib(n-1) + fib(n-2)
    
print(fib(10))
输出: 55

结果没有问题,接下来看一下递归性能如何。

性能测试

写个简单的计时的测试代码:

import time
n = 40
tic = time.clock()
res = fib(n)
toc = time.clock()
print('fib({}) = {}'.format(n,res))
print('runtime: {}s '.format(toc-tic))

我们看下n=10的结果:

fib(10) = 55
runtime: 2.4462208330078283e-05s 

再看下 n=40 时的结果:

fib(40) = 102334155
runtime: 40.73219172568648s 

我们发现:当n变大时,这段递归代码用时变得很久,而且性能是急剧下降。这是为什么呢?

原因分析

拿fib(5)来举例,要计算fib(5),得知道fib(4)的值,要计算fib(4)的值,又得知道fib(3)的值,以此类推,直到递归到底时,fib(0)=0。下图是个fib(5)求解的展开图,可以看到,这里面有很过的重复计算,比如浅粉色框框住的fib(2)就重复计算了三次,可想而知当n很大时,这些重复计算的次数将呈指数上升,这就是递归效率不高的原因——重叠子问题
fib(5)示意图


2. 记忆化搜索

改进方法就是,将计算过的fib()值存储下来,下次用到直接查就行,这种方法叫记忆化搜索
于是在递归代码的基础上可以很轻松地改写成记忆化搜索,代码如下:

# 记忆化搜索:自上而下地求解
def fib_memo(n):
    def fib(n):
        if n in [0,1]:
            return n
        # 如果memo数组中没有计算过fib(n),则需计算一下并存到memo[n]中
        if memo[n] == -1:
            memo[n] = fib(n-1) + fib(n-2)
        return memo[n]

    memo = [-1 for i in range(n+1)]  # memo[0...n]中所有元素初始值为-1,表示未计算
    return fib(n)

fib(40)的测试结果:

fib(40) = 102334155
runtime: 2.4746652798057767e-05s 

经过简单的记忆化改造,效率由 40.7s 提升到了 0.0000247s !
记忆化搜索本质还是一种递归,只是用额外的变量来存储中间值而已,属于典型的空间换时间的方式。由于递归是一种自顶向下的方式,所以记忆化搜索也是一种自顶而下的搜索方法,即计算顺序是

   fib(n) → fib(n-1) → fib(n-2) → ... → fib(1) → fib(0)

最后再从fib(0)一路回溯给fib(n),done!

那么可不可以自底向上地算出斐波那契数列呢?当然有啊,这就是接下来要隆重请出的动态规划


3. 动态规划(Dynamic Programming,DP)

思路很简单,知道了 fib(0) 和 fib(1),就可以相加得fib(2),fib(1)+fib(2)又得fib(3),依次类推直到 fib(n)。自底向上的求解过程:

   fib(0) → fib(1) → fib(2) → ... → fib(n-1) → fib(n)

没错,这也极其符合人的直观感觉,看着很舒服很顺眼。
于是很容易写出代码:

# 动态规划:自下而上地解决问题
def fib(n):
    memo = [-1 for i in range(n+1)]
    memo[0] = 0
    memo[1] = 1
    for i in range(2,n+1):
        memo[i] = memo[i-1] + memo[i-2]
    
    return memo[n]

看下测试结果:

fib(40) = 102334155
runtime: 1.6782212696853094e-05s 

0.0000167s 比记忆化搜索的 0.0000247s 又提高了一丢丢,这主要是因为记忆化搜索中多出了反复递归的开销。

最优子结构

其实fib数列不是重点,重点是这个:这里面fib(2)是fib(3)的子问题,fib(3)又是fib(4)的子问题,以此类推,所以这是一个通过子问题推得原问题的过程。我们可以把上面的过程总结为这句话:通过求子问题的最优解,可以获得原问题的最优解。
这里的子问题称为最优子结构
好,接下类引出动态规划的定义:

将原问题拆解成若干个子问题,同时保存子问题的答案,使得每个子问题只求解一次,最终获得原问题的答案。

好,介绍完毕。

总结一下这几个解法:

在递归问题中如果存在重叠子问题,那么就可以进行以下两种改造:

  1. 自顶而下地解决问题:记忆化搜索
  2. 自底而上地解决问题:动态规划
    动态规划

几个例题

LeetCode 70 Climbing Stairs

LeetCode 70. 爬楼梯
解析:要爬到n阶台阶,有 ①从n-1阶再爬一阶到达 ②也可从n-2阶再爬2阶到达,这两种方式,所以爬到n阶的方法数等于爬到n-1阶的方法数与爬到n-2的方法数的和。接下来,n-1阶的方法数也等于n-2阶的加上n-3阶的,以此类推直到爬1阶和爬0阶。所以,这个问题本质就是一个fibonacci数列的求解! 而且这里面也存在很多重复计算的子块,例如下图蓝色子块。同上面的代码一样,这个问题完全可以用原生的递归方法、记忆化搜索和动态规划求解的。
爬楼梯

LeetCode上 其他相似的例题:
在这里插入图片描述
在这里插入图片描述


4. 动态规划的核心:状态与状态转移方程

前面我们将动态规划描述为一种 通过求子问题的最优解,从而求得原问题的最优解 的方法,那么有人可能会问了:

  1. 如何将原问题切分成子问题?
  2. 又怎么将子问题的解延伸回原问题,也就是说子问题和原问题是怎么连接起来的?

对于问题1,如何切分子问题,在DP中被称为状态的定义,其中子问题被称为状态
对于问题2:,如何从子问题到原问题,在DP被称为状态转移方程

这两个东西才是动态规划的核心。

到底是怎么回事,直接拿LeetCode上两个例子说话:

LeetCode 343 Integer Break

LeetCode 343 Integer Break
解析:

  1. 我们定义 v[n] 分割正数n的最大乘积 ,这是状态的定义
  2. 每次将n分解为两个数的和,如:1+(n-1), 2+(n-2), 3+(n-3)…,对于每一种分割 i+(n-i),最大乘积 v[n] 的来源于 in-i 的乘积 和 iv[n-i] 的乘积 中较大的那个,而最终的最大v[n]是在所有 1<=i<=n上最大的那个,即v[n] = max( i×(n-i), i×v[n-i] ) for 1<=i<=n-1 ,这就是从v[n-1]v[n]状态转移方程
  3. 这里存在重叠子问题,如下图中蓝块。
    在这里插入图片描述
    思路: 递归、记忆化搜索、动态规划
  1. 状态定义: v[n] 分割正数n的最大乘积
  2. 状态转移: v[n] = max( i×(n-i), i×v[n-i] ) for 1<=i<=n-1

代码
我将递归、记忆化搜索和动态规划三种方法放在了一个类中:

class Solution:
    def integerBreak_rec(self, n):
        """
        :type n: int
        :rtype: int
        原生的递归方法:效率低
        """
        def breakInteger(n):
            if n==1:
                return 1
            res = -1
            for i in range(1,n):
                # n = i + (n-i)
                res = max( res, i*(n-i), i*breakInteger(n-i) )
            return res

        return breakInteger(n)

    def integerBreak_memo(self, n):
        """
        :type n: int
        :rtype: int
        第一种改进: 自上而下的记忆化搜索
        """
        def breakInteger(n):
            if n==1:
                return 1
            if memo[n] != -1:
                return memo[n]
            res = -1
            for i in range(1,n):
                # n = i + (n-i)
                res = max( res, i*(n-i), i*breakInteger(n-i) )
            memo[n] = res
            return res

        assert n>=2
        memo = [-1 for i in range(n+1)]
        return breakInteger(n)

    def integerBreak_dp(self, n):
        """
        :type n: int
        :rtype: int
        第二种改进:自底向上动态规划
        """
        assert n>=2
        memo = [-1 for i in range(n+1)]

        memo[1] = 1
        for i in range(2,n+1):
            for j in range(1,i):
                memo[i] = max( memo[i], j*(i-j), j*memo[i-j] )
                
        return memo[n]
     
if __name__ == '__main__':      
    n = Solution().integerBreak_dp(10)
    print(n)

LeetCode上与此题相似的题目:

  • 279 Perfect Squares
    给定一格正整数n,寻找最少的完全平方数,使他们的和为n。
  • 91 Decode Ways
    数字字符串的解析
  • 62 Unique Paths
    机器人从m×n的矩阵左上角出发到达右下角(每次只能向右或向下),共有多少种路径?
  • 63 Unique Paths II
    (接上题)若矩阵中含有障碍物,此时共有多少种路径?

LeetCode 198 House Robber

小偷洗劫一条街上的所有房子,每个房子有不同价值的把宝物,但不能连续抢劫俩相邻房子。求最多可以偷到多少宝物?

暴力解法

检查所有房子的组合,对每一个组合,检查是否有相邻的房子,如果没有,记录其价值,找最大值。
时间复杂度: O( (2^n)*n )
这个方法效率非常之低。

动态规划

考虑如下结构
在这里插入图片描述

"""
198. House Robber

转态定义:考虑偷取[x...n)范围里的房子
状态转移方程:
            f(0) = max{ v(0)+f(2),
                        v(1)+f(3),
                        v(2)+f(4),
                        ...
                        v(n-3)+f(n-1),
                        v(n-2),
                        v(n-1)}  
"""
class Solution:
    def rob_rec(self, nums):
        """
        :type nums: List[int]
        :rtype: int
        递归方法
        """
        # 考虑抢劫nums[index:]范围内的所有房子
        def tryRob(index)if index >= len(nums):
                return 0
            res = 0
            for i in range(index,len(nums)):
                res = max( res, nums[i]+tryRob(i+2) )
            return res

        return tryRob(0)

    def rob_memo(self, nums):
        """
        :type nums: List[int]
        :rtype: int
        记忆化搜索
        """
        # 考虑抢劫nums[index:]范围内的所有房子
        def tryRob(index)if index >= len(nums):
                return 0
            if memo[index] != -1:
                return memo[index]

            res = 0
            for i in range(index,len(nums)):
                res = max( res, nums[i]+tryRob(i+2) )
            memo[index] = res
            return res

        # memo[i] 表示考虑抢劫 nums[i...n) 所能获得的最大收益
        memo = [-1 for i in range(n)]
        return tryRob(0)

        
    def rob_dp(self, nums):
        """
        :type nums: List[int]
        :rtype: int
        动态规划法
        """
        n = len(nums)
        if n == 0:
            return 0
        
        # memo[i] 表示考虑抢劫 nums[i...n) 所能获得的最大收益
        memo = [-1 for i in range(n)]
        memo[n-1] = nums[n-1]
        
        for i in range(n-2,-1,-1):
            # memo[i]
            for j in range(i,n):
                if j<n-2:
                    memo[i] = max(memo[i],nums[j]+(memo[j+2]) 
                else:
                    memo[i] = max(memo[i],nums[j]) # 末尾两个元素只能是自己
                
        return memo[0]
        
        
if __name__ == '__main__':          
	nums = [2,7,9,3,1]
	res = Solution().rob_dp(nums)   
	print(res)

LeetCode上与此题相似的题目:
  • 213 House Robber II
    此处将街道改为环形街道,即最后一个元素和第一个元素为邻居。求窃得财产的最大值。
  • 337 House Robber III
    此处将街道给为小区,小区是二叉树结构,即不能同时选择相邻节点。
  • 309 Best Time to Buy and Sell Stock with Cooldown
    股票买卖时机的选择,使利润最大化。

5. 动态规划经典应用:背包问题

在动态规划中,有类非常经典的问题称为0-1背包问题。有一个背包,容量是C,现有那种不同的物品,编号为0…n-1
,其中每一件物品重量为w(i),价值为v(i)。问可以向包中放哪些物品,使得在不超过背包容量的基础上,物品总价值最大。

三种解法

暴力解法:每一件物品都可以放进或者不放进,遍历所有可能性。 时间复杂度O((2^n)*n)。
贪心算法:优先放入平均价值最大的物品,结果只是近似解,而不是最优解。
动态规划

状态: F(n,C) 考虑将n个物品放进容量为C的背包,使得价值最大。(这里约束条件为n和C)
状态转移方程: F(i,C) = max( F(i-1,C), v(i)+F(i-1,C-w(i)) )
对应 1.不放入第i个物品 2.放入第i个物品 这两种状态中值最大的那个。

背包问题动态规划解法的实现及优化

时间复杂度为O(nC)已经几乎没有优化空间了,但是可以从空间复杂度上进行优化。

  1. 动态规划解法: n行版
    原始动态规划,建立一个n行C+1列的矩阵 memo[n-1][C+1]
    时间复杂度:O(nC)
    空间复杂度:O(nC)

  2. 动态规划解法: 两行版
    改进1:由于第i行元素只依赖于第i-1行元素。理论上,memo只需要保证两行元素。
    空间复杂度 O(2C)=O( C)

  3. 动态规划解法: 一行版
    改进2:由于某位置的元素只依赖于上一行的对应位置和上一行的左侧元素。所以可以从右边开始更新,这样memo只需一行就可以完成。
    空间复杂度 O( C)

背包问题的变种

  • 多重背包问题:每个物品不止1个,有num(i)个
  • 完全背包问题:每个物品可以无限使用
  • 多维费用背包问题:要考虑物品的体积和重量两个维度(原问题上增加一个约束条件,memo数组变为三维即可)
  • 物品间加入更多约束:物品间可以相互排斥;也可以相互依赖

背包问题实例

416 Patition Equal Subset Sum 分割等和子集

典型的背包问题:在n个物品中选出一定物品,填满sum/2的背包
与原背包问题不同的是:我们不需要物品价值最大,目标是能填满。或者也可以理解为物品价值均为1。

LeetCode上与此题相似的题目:
  • 322 Coin Change
    给定不同面值的硬币,问需要多少硬币(可反复使用),可以凑成指定的金额?
  • 377 Combination Sum IV
    给定一整数数组(无重复数字,但数字可重复使用),问有多少种可能,使用这个数组中的数字,凑成一个指定的整数target。
  • 474 Ones and Zeros
  • 139 Word Break
    判断字符串数组中可否有不同字符串收尾相连组成target字符串。
  • 494 Target Sum
    给定非0数字数组,在这些数前面加上+或-,使其结果为给定的整数S。

6. 动态规划应用: 最长上升子序列(LIS)

300 Longest Increasing Subsequence

给定一整数序列,求其中的最长上升子序列的长度。

  • 方法1:动态规划解法
    1. 状态定义LIS(i) 表示以第i个数字为结尾的最长上升子序列的长度。即表示[0…i]范围内,选择数组nums[i] 可以获得的最长上升子序列的长度
    2. 状态转移: LIS(i) = max( 1+LIS(j) if nums[i]>nums[j] for j<i )
    时间复杂度O(n^2)
  • 方法2:二分搜索法
    这里不做介绍。
    时间复杂度O(nlogn)

LeetCode上与此题相似的题目:

  • 376 Wiggle Subsequence
    求最长轮流交替子序列

最长公共子序列: LCS问题

给出两个字符串S1和S2,求这两个字符串的最长公共子序列的长度。
状态定义

LCS(m,n) 是S1[0…m]和S2[0…n]的最长公共子序列的长度。

转移方程

  1. S1[m] == S2[n]: LCS(m,n) = 1+ LCS(m-1,n-1)
  2. S1[m] != S2[n]: LCS(m,n) = max(LCS(m-1,n),LCS(m,n-1))

7. 关于动态规划的其他:

  • 动态规划其实相当常见,譬如 dijkstra单源最短路径算法也是动态规划

    状态定义: shortestPath(i)为从start到i的最短路径长度
    状态转移: shortestPath(i) = min( shortestPath(i) + w(a->i))

  • 动态规划是一个非常大的问题范畴,因为它不仅他可以解决的问题是非常灵活的,还因为它是公认的在算法设计上艺术含量非常高的算法,因为动态规划似乎没有一个固定的套路。
  • LeetCode上更多关于动态规划的问题,找dp标签的题。
  • 单论面试,面试中动态规划考察较少,更多的是考察更基础的问题,所以可以相对放松对LeetCode上动态规划题目的要求。

8. 如何用动态规划给出具体的解:返回去找

例1: 300. 最长上升子序列。
例2: 0-1背包问题

References:
非常好的动态规划总结,DP总结
背包问题的总结
动态规划(dp) 之 状态转移方程

  • 30
    点赞
  • 123
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: DP83848VV是一款以太网物理层收发器芯片,可以在工业控制和通信领域广泛应用。它是一种支持10/100/1000 Mbps传输速率的芯片,采用了半双工或全双工的通信方式。 DP83848VV原理图主要包括以下几个核心组成部分:发送数据器、接收数据器、速率自适应控制器、MDI(媒体独立)接口和PHY(物理层)接口。 发送数据器能够将数据转换为适合在以太网上发送的信号。接收数据器则可以将接收到的信号转换为数字信号,以便于后续的数据处理。 速率自适应控制器能够根据网络状况自动选择适合的传输速率。在传输速率发生变化时,它可以通过与远端设备的通信来实时调整自身的速率,以确保数据的可靠传输。 MDI接口用于与外部设备连接,例如以太网电缆。它提供了与物理层接口之间的物理连接,并通过将发送和接收信号分别传送到发送数据器和接收数据器来实现数据的传输。 PHY接口则是与上层控制器(如微控制器)进行通信的接口。通过PHY接口,微控制器可以向DP83848VV发送控制命令,并获取芯片状态信息等。 总的来说,DP83848VV原理图展示了该芯片的内部连接和功能。它通过发送数据器和接收数据器实现数据的发送和接收,通过速率自适应控制器实现传输速率的调整,通过MDI接口和PHY接口实现与外部设备和微控制器的连接。这些功能使得DP83848VV成为一款功能强大、适用于各种应用场景的以太网物理层收发器芯片。 ### 回答2: DP83848VV是一种高性能,集成了以太网MAC和PHY功能的单芯片解决方案。原理图显示了该芯片的内部电路连接和电气特性。 首先,DP83848VV具有以太网MAC功能,可以实现数据包的处理和管理。它包括了一些关键组件,如发送和接收数据包的模块,用于存储接收到的数据包的缓冲区和用于管理数据包流量的控制器。原理图中显示了这些组件之间的连接和信号传递路径。 其次,DP83848VV还包含以太网PHY功能,用于实现物理层的电信号传输和接收。它包括了一个媒体访问控制子层(Physical Layer Sublayer,PLS)和一个物理媒体接口(Physical Media Attachment,PMA)。原理图中显示了PHY和MAC之间的接口和信号传递路径。 此外,原理图还显示了DP83848VV与主处理器之间的连接,包括数据线、时钟线和控制线等。这些线路用于传输数据、时钟和控制信号,从而实现DP83848VV与主处理器之间的通信。 在原理图中,还可以看到一些外部组件,如晶体振荡器、滤波器和电源管理模块等。晶体振荡器提供了芯片的时钟信号,滤波器用于过滤信号和噪声,电源管理模块用于管理芯片的电源供应。 总之,DP83848VV的原理图提供了该芯片内部电路连接和电气特性的详细信息。这个原理图对于设计和理解这种集成解决方案的工程师来说是非常重要的。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值