15. 三数之和
题目:
给你一个包含
n
n
n 个整数的数组 nums
,判断 nums
中是否存在三个元素
a
,
b
,
c
a,b,c
a,b,c ,使得
a
+
b
+
c
=
0
a + b + c = 0
a+b+c=0 ?请你找出所有满足条件且不重复的三元组。
注意: 答案中不可以包含重复的三元组。
示例:
给定数组 nums = [-1, 0, 1, 2, -1, -4],
满足要求的三元组集合为:
[
[-1, 0, 1],
[-1, -1, 2]
]
排序,双指针
暴力搜索的方法复杂度为 O ( n 3 ) O(n^3) O(n3),因此需要对其进行一个优化,可以先使用一次排序算法,复杂度为 O ( n l o g n ) O(nlogn) O(nlogn),之后利用有序数组的特性,对遍历进行优化,并在此基础上避开重复的结果。
这种多个数之和的问题,都可以转换为先固定一个数 n u m s [ k ] nums[k] nums[k](复杂度 O ( n ) O(n) O(n)),再找另外两个数之和为为 − n u m s [ k ] -nums[k] −nums[k]的问题。
利用数组有序,在 k k k固定之后,使用双指针 i , j i,j i,j分别指向区间 ( k , n u m s . l e n g t h ) (k,nums.length) (k,nums.length)的两端向内收缩搜索:
- 如果 n u m s [ i ] + n u m s [ j ] > − n u m s [ k ] nums[i] + nums[j] > - nums[k] nums[i]+nums[j]>−nums[k],此时只能将指针 j j j向内移动—— j − − j-- j−−。
- 如果 n u m s [ i ] + n u m s [ j ] < − n u m s [ k ] nums[i] + nums[j] < - nums[k] nums[i]+nums[j]<−nums[k],此时只能将指针 i i i向内移动—— i + + i++ i++。
通过这种操作,使得内层循环复杂度也降至 O ( n ) O(n) O(n),使得总复杂度变为 O ( n l o g n ) + O ( n ) ∗ O ( n ) = O ( n 2 ) O(nlogn) + O(n) * O(n) = O(n^2) O(nlogn)+O(n)∗O(n)=O(n2),并且利用有序数组可以在 k k k以及 i , j i,j i,j两个维度上将相同的数字跳过,避免最后集合中的元素重复。
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
class Solution {
public List<List<Integer>> threeSum(int[] nums) {
List<List<Integer>> res = new ArrayList<>();
Arrays.sort(nums);
for (int k = 0; k < nums.length; k++) {
if(k > 0 && nums[k] == nums[k - 1]) continue;
if (nums[k] > 0) break;
int i = k + 1, j = nums.length - 1;
while (i < j) {
if(nums[i] + nums[j] > - nums[k]) j--;
else if(nums[i] + nums[j] < - nums[k]) i++;
else{
res.add(new ArrayList<Integer>(Arrays.asList(nums[k], nums[i], nums[j])));
while(i < j && nums[i] == nums[++i]);
while(i < j && nums[j] == nums[--j]);
}
}
}
return res;
}
}
复杂度分析
-
时间复杂度: O ( n 2 ) O(n^2) O(n2)
见上文, O ( n l o g n ) + O ( n ) ∗ O ( n ) = O ( n 2 ) O(nlogn) + O(n) * O(n) = O(n^2) O(nlogn)+O(n)∗O(n)=O(n2)。
-
空间复杂度: O ( 1 ) O(1) O(1)
使用常数大小的额外空间。