LeetCode 热题 HOT 100 Java题解——78. 子集

78. 子集

题目:

给定一组不含重复元素的整数数组 nums,返回该数组所有可能的子集(幂集)。

说明: 解集不能包含重复的子集。

示例:

输入: nums = [1,2,3]
输出:
[
  [3],
  [1],
  [2],
  [1,2,3],
  [1,3],
  [2,3],
  [1,2],
  []
]

(1)回溯1

递归遍历每一位,每一位都可以选或者不选,选了之后回来需要回溯的变回原样。

class Solution {
    List<List<Integer>> res = new ArrayList<>();
    List<Integer> path = new ArrayList<>();
    public void backtrack(int[] nums, int start) {
        if(start == nums.length) {
            res.add(new ArrayList<>(path));
            return;
        }
        backtrack(nums, start + 1); //不选
        path.add(nums[start]);  //选
        backtrack(nums, start + 1);
        path.remove(path.size() - 1);   //回溯复原
    }
    public List<List<Integer>> subsets(int[] nums) {
        backtrack(nums, 0);
        return res;
    }
}
复杂度分析
  • 时间复杂度: O ( n × 2 n ) O(n \times 2 ^ n) O(n×2n)

    每个位置都可以选或不选,两种情况为 O ( 2 n ) O(2 ^ n) O(2n),添加到结果中需要 O ( n ) O(n) O(n), 所以总时间复杂度为 O ( n × 2 n ) O(n \times 2 ^ n) O(n×2n)

  • 空间复杂度: O ( n ) O(n) O(n)

    构造子集需要 O ( n ) O(n) O(n)

(2)回溯2

递归遍历每一位,递归每一层之前都先保存下路径表示当前这层的数字不选,整个路径就是全部子集。

class Solution {
    //
    List<Integer> path = new ArrayList<>();
    List<List<Integer>> res = new ArrayList<>();
    public void backtrack(int[] nums, int start) {
        res.add(new ArrayList<>(path));
        for (int i = start; i < nums.length; i++) {
            path.add(nums[i]);
            backtrack(nums, i + 1);
            path.remove(path.size() - 1);
        }
    }
    public List<List<Integer>> subsets(int[] nums) {
        backtrack(nums, 0);
        return res;
    }
}
复杂度分析
  • 时间复杂度: O ( n × 2 n ) O(n \times 2 ^ n) O(n×2n)

    每个位置都可以选或不选,两种情况为 O ( 2 n ) O(2 ^ n) O(2n),添加到结果中需要 O ( n ) O(n) O(n), 所以总时间复杂度为 O ( n × 2 n ) O(n \times 2 ^ n) O(n×2n)

  • 空间复杂度: O ( n ) O(n) O(n)

    构造子集需要 O ( n ) O(n) O(n)

(3)二叉树前序遍历

每个元素都可以选或者不选,构成了一颗满二叉树。使用先序遍历即可。

class Solution {
    List<List<Integer>> res = new ArrayList<>();
    public void preOrder(int[] nums, List<Integer> path, int index) {
        if(index >= nums.length) return;
        path = new ArrayList<>(path);

        res.add(new ArrayList<>(path));
        preOrder(nums, path,  index + 1);
        path.add(nums[index]);
        preOrder(nums, path, index + 1);
    }
    public List<List<Integer>> subsets(int[] nums) {
        preOrder(nums, new ArrayList<>(), 0);
        return res;
    }
}
复杂度分析
  • 时间复杂度: O ( n × 2 n ) O(n \times 2 ^ n) O(n×2n)

    每个位置都可以选或不选,两种情况为 O ( 2 n ) O(2 ^ n) O(2n),添加到结果中需要 O ( n ) O(n) O(n), 所以总时间复杂度为 O ( n × 2 n ) O(n \times 2 ^ n) O(n×2n)

  • 空间复杂度: O ( n ) O(n) O(n)

    构造子集需要 O ( n ) O(n) O(n)

(4)位运算

每一位都可以选或者不选。

class Solution {
    public List<List<Integer>> subsets(int[] nums) {
        List<List<Integer>> res = new ArrayList<>();
        for (int i = 0; i < (1 << nums.length); i++) {
            List<Integer> path = new ArrayList<>();
            for (int j = 0; j < nums.length; j++) {
                if(((i >> j) & 1) == 1) path.add(nums[j]);
            }
            res.add(new ArrayList<>(path));
        }
        return res;
    }
}
复杂度分析
  • 时间复杂度: O ( n × 2 n ) O(n \times 2 ^ n) O(n×2n)

    每个位置都可以选或不选,两种情况为 O ( 2 n ) O(2 ^ n) O(2n),添加到结果中需要 O ( n ) O(n) O(n), 所以总时间复杂度为 O ( n × 2 n ) O(n \times 2 ^ n) O(n×2n)

  • 空间复杂度: O ( n ) O(n) O(n)

    构造子集需要 O ( n ) O(n) O(n)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值