快速排序
选择排序
插入排序
冒泡排序
快速排序是一种基于分治思想的排序算法,其核心算法可以概括为以下三个步骤:
选择一个基准元素(pivot),将待排序序列分成两部分,一部分元素值比基准元素小,另一部分元素值比基准元素大;
递归地对小于基准元素的子序列和大于基准元素的子序列进行排序;
将排好序的两部分序列合并起来,即可得到完整的有序序列。
具体实现时,可以采用多种方式选择基准元素,例如选择第一个元素、最后一个元素、中间的元素,或者随机选择一个元素作为基准元素。同时,还可以通过优化枢纽元素的选择,减少快排的最坏情况的时间复杂度。
void quicksort(vector<int>& nums, int left, int right) {
if (left >= right) return; // 基线条件
int pivot = nums[left]; // 选择第一个元素作为基准元素
int i = left, j = right;
while (i < j) {
while (i < j && nums[j] >= pivot) j--;
if (i < j) nums[i++] = nums[j];
while (i < j && nums[i] < pivot) i++;
if (i < j) nums[j--] = nums[i];
}
nums[i] = pivot; // 将基准元素放置在正确的位置
quicksort(nums, left, i - 1); // 递归排序左边的子序列
quicksort(nums, i + 1, right); // 递归排序右边的子序列
}
快速排序是一种经典的排序算法,其核心思想是通过递归分治的方式将问题规模不断缩小,最终实现对整个序列的排序。除了标准的快速排序算法外,还有一些变种的写法。
随机化快速排序:在标准快速排序算法中,选择的基准元素对算法的性能有很大的影响。为了减少这种影响,可以随机选择基准元素,从而提高算法的性能。
三路快速排序:在标准快速排序算法中,将整个序列分为两部分,一部分小于基准元素,一部分大于基准元素。但如果存在大量的相同元素,这种分割方式可能会导致递归树的不平衡,从而影响算法的性能。为了解决这个问题,可以将序列分成三部分,小于基准元素的部分、等于基准元素的部分和大于基准元素的部分。
双路快速排序:在标准快速排序算法中,对于小于等于基准元素的元素和大于等于基准元素的元素,分别在序列的左右两边,可能导致递归树的不平衡。为了解决这个问题,可以使用双路快速排序算法,即在序列的左右两端同时进行比较和交换。
这些变种的快速排序算法都是基于快速排序的基本思想,通过不同的分割方式、基准元素的选择等来提高算法的性能。您可以根据具体问题的特点选择适合自己的排序算法。
1.随机化快速排序
void quickSort(int arr[], int left, int right)
{
if (left >= right) {
return;
}
int pivotIndex = rand() % (right - left + 1) + left; // 随机选择基准元素
swap(arr[pivotIndex], arr[right]); // 将基准元素交换到序列末尾
int i = left - 1;
for (int j = left; j < right; j++) {
if (arr[j] < arr[right]) {
i++;
swap(arr[i], arr[j]);
}
}
i++;
swap(arr[i], arr[right]); // 将基准元素交换到正确的位置
quickSort(arr, left, i - 1);
quickSort(arr, i + 1, right);
}
2.三路快速排序
void quickSort(int arr[], int left, int right)
{
if (left >= right) {
return;
}
int lt = left, gt = right, i = left + 1;
int pivot = arr[left];
while (i <= gt) {
if (arr[i] < pivot) {
swap(arr[i], arr[lt]);
i++;
lt++;
} else if (arr[i] > pivot) {
swap(arr[i], arr[gt]);
gt--;
} else {
i++;
}
}
quickSort(arr, left, lt - 1);
quickSort(arr, gt + 1, right);
}
3.双路快速排序
void quickSort(vector<int>& nums, int left, int right) {
if (left >= right) return;
int lt = left, gt = right;
int i = left + 1;
int pivot = nums[left];
while (i <= gt) {
if (nums[i] < pivot) {
swap(nums[i], nums[lt]);
i++;
lt++;
} else if (nums[i] > pivot) {
swap(nums[i], nums[gt]);
gt--;
} else {
i++;
}
}
quickSort(nums, left, lt - 1);
quickSort(nums, gt + 1, right);
}
选择排序是一种简单的排序算法,其核心思想是每次从未排序的元素中选择最小(或最大)的元素,将其放置到已排序的末尾。重复这个过程直到所有元素都排好序。
选择排序的实现步骤如下:
从序列中找出最小的元素,记为min;
将最小元素min与序列的第一个元素交换位置;
从剩余的n-1个元素中找出最小的元素,记为min2;
将min2与序列的第二个元素交换位置;
重复上述步骤,直到序列中所有元素都排好序。
选择排序的时间复杂度为O(n^2),空间复杂度为O(1)。尽管选择排序的时间复杂度较高,但它比冒泡排序效率要高一些,因为它在每一轮排序中只需要交换一次元素。另外,选择排序是一种不稳定的排序算法,因为交换过程中可能会改变相同元素的相对顺序。
void selectionSort(vector<int>& arr, int n)
{
for (int i = 0; i < n - 1; i++)
{
int minIdx = i;
for (int j = i + 1; j < n; j++)
{
if (arr[j] < arr[minIdx])
{
minIdx = j;
}
}
if (minIdx != i)
{
swap(arr[i], arr[minIdx]);
}
}
}
插入排序的基本思想是将数组分为已排序区间和未排序区间,初始已排序区间只有一个元素,每次取未排序区间的第一个元素,在已排序区间中从后向前扫描,找到相应位置并插入。重复这个过程,直到未排序区间为空。
void insertionSort(vector<int>& arr, int n)
{
for (int i = 1; i < n; i++)
{
int j = i;
while (j > 0 && arr[j] < arr[j - 1])
{
swap(arr[j], arr[j - 1]);
j--;
}
}
}
冒泡排序(Bubble Sort)是一种简单的排序算法,它重复地走访过要排序的序列,一次比较两个元素,如果它们的顺序错误就把它们交换过来,直到没有元素再需要交换,排序完成。
冒泡排序的核心思想是比较相邻的两个元素,如果顺序不对就交换,这样一轮比较下来可以保证最大的元素被交换到了最后面,然后再对剩下的元素进行相邻两个元素的比较交换,直到整个序列有序为止。
void bubbleSort(vector<int>& arr)
{
int n = arr.size();
for (int i = 0; i < n-1; ++i)
for (int j = 0; j < n-i-1; ++j)
if (arr[j] > arr[j+1])
{
int temp = arr[j];
arr[j] = arr[j+1];
arr[j+1] = temp;
}
}