经典KMP算法整理

KMP算法

大名鼎鼎的算法

KMP由三位前辈的名字缩写组成

其中第一位就是写The art of the computer programming的高德纳

它是一种效率很高的字符串匹配算法

传统朴素做法的时间复杂度为O(n*m)

而KMP算法能将时间复杂度缩小到O(n+m)

下面进入正题

KMP算法

那么究竟快在哪里呢?

我们回顾一下传统做法

一旦匹配失败后就从头开始匹配

这样很浪费时间

我们考虑让模式串在主串上尽可能地向右滑动

可以跳过一些不必要的判断

这个时候我们需要引入前缀函数来让模式串尽可能地向右移动

我们记主串为S,模式串为T,主串的下标为(1<=i<=n),模式串的下标为(1<=j<=m)

假设我们检查到S[i]和T[j],结果发现它们不匹配

则我们知道从S[i-j+1]到S[i]与T[1]到T[j]完全匹配

那么我们考虑i-j+1<k<n-m+1

如果S(k,k+m-1)与模式串完全匹配,那么必要条件是k>=i或者

重点来了

T(k,i-1)与T(1,i-k)相匹配,同时,T(k,i-1)还与T(k+i-j,j-1)相匹配

所以T(1,i-k)是T(1,j-1)的后缀

KMP算法的核心就是:令pi[j-1] = Max{x:T(1,x)是T(1,j - 1)的后缀}

然后将模式T向右滑动,使得索引指针指向SiT的第pi[j-1] + 1个字符。pi[i]的大小与主串S并无关联,所以我们应该事先通过预处理求出并保存所有pi[i](1< i <m)值,即所谓的前缀函数。过程如下:


pi[0]=-1;

for (i=1;i<=m;i++)

{

Q=pi[i-1];

while (Q>=0)and(T的第Q+1个字符不等于第i个字符)  Q=pi[Q];

pi[i]=Q+1;

}


有了前缀函数

接下来的事就变得简单起来了

我们需要做的就是不断的滑动

嗯,就是这样

Q = 0

for (i=1;i<=n;i++)

{

while (Q>0)&&(T[Q]!=S[i])

Q=pi[Q];

if (T[Q]==S[i]) {

Q++;

if (Q==m) then 匹配成功!

}

}





  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值