2015 ICPC CERC F题 Frightful Formula

题意:

大致来说就是给你一个矩阵F的第一行和第一列,让你通过递推式F[i, j] = a ∗ F[i, j − 1] + b ∗ F[i − 1, j] + c计算出F[n,n] mod (1e6+3)的大小。

n<=2e5,a,b,c<=1e6

Time Limit 10s

题解:首先直观来看2e5的数据范围,O(n^2)的暴力做法显然不可取。因此要考虑其他方法。

当你把矩阵顺时针旋转45度之后会发现,这道题跟杨辉三角有很大的相似之处,只不过杨辉三角在从上到下递推的时候,a=b=1,c=0,因此这道题只是把杨辉三角在递推时的系数修改成特定的a,b,然后在每次递推的时候又多增加了一个数c。

我的思路是先不考虑c,考虑矩阵的第一行和第一列对最后的F[n,n]做出了多少贡献,那么其实这个问题就转化为了一个组合数学的问题,一个数每向右走一步就乘a,向下走一步就乘b,再考虑一下中间走法有多少种不同情况,其实就是一个基础的高中组合数学题。而且这样的复杂度是O(n)的。然而,多出来的那个c让我们很难受,因为在每一次合并都会产生一个c,这样如果我们去枚举每个新产生的c对最后答案的贡献的话,显然我们的复杂度是O(n^2)的,虽然想法还蛮漂亮,但是实质上跟暴力的复杂度没有任何区别。然后我就一直被卡在这里了。最后看了一下网上的题解,用了高中做数列题的一种方法,就是通过待定系数法消去c,F[i, j] + k= a ∗ (F[i, j − 1] + k) + b ∗ (F[i − 1, j] +k ) 。解得k=c / ( a + b - 1)。因此,我们可以设 G[i , j]=F[i , j] + c / (a + b - 1),这样G[i , j] = a * G[i , j -1 ] + b * G[ i-1 , j ]。最后在算出的G[n,n]基础上减去k即可。这样我们就可以O(n)的求得G[n,n],然后O(1)的求得F[n,n]。这里稍微要注意的一点是分数在模意义下的值。c/(a+b-1)%mod=c*Inv[a+b-1]%mod。

网上也有很多用FFT做这道题的,也有用原式化简整理递推最后O(n)过的。就这道题来说,这么做相比之下比较容易实现,且比较好想,不需要化简整理做特别多的代数运算,而且类似的思路可以推广,就是在计算线性递推的时候可以利用待定系数法把与F无关的项暂时消去,是一种做这种题的个人认为非常适合的做法。

代码如下:
#include<cstdio>
using namespace std;
typedef long long ll;
const ll mod=1e6+3;
const ll maxn=2e5+5;
ll l[maxn+5],r[maxn+5];
ll fac[2*maxn+5],facInv[2*maxn+5];
ll quick_pow(ll a,ll b)
{
    ll ans=1;
    while (b) {
        if (b&1) ans=ans*a%mod;
        a=a*a%mod;
        b>>=1;
    }
    return ans;
}
void init(ll n)
{
    fac[0]=1;facInv[0]=1;
    for (ll i=1;i<=n;i++) {
        fac[i]=fac[i-1]*i%mod;
        facInv[i]=facInv[i-1]*quick_pow(i,mod-2)%mod;
    }
}
ll C(ll n,ll m)
{
    ll ans=1;
    ans=fac[n];
    ans=ans*facInv[m]%mod;
    ans=ans*facInv[n-m]%mod;
    return ans;
}
int main()
{
    int n,i,j;
    ll a,b,c;
    scanf("%d%lld%lld%lld",&n,&a,&b,&c);
    init(2*maxn);
    for (i=1;i<=n;i++) scanf("%lld",&l[i]);
    for (i=1;i<=n;i++) scanf("%lld",&r[i]);
    for (i=1;i<=n;i++) {
        l[i]=(l[i]+c*quick_pow(a+b-1,mod-2)%mod)%mod;
        r[i]=(r[i]+c*quick_pow(a+b-1,mod-2)%mod)%mod;
    }
    ll ans=0,cur;
    for (i=2;i<=n;i++) {
        cur=quick_pow(a,n-1)*l[i]%mod;
        cur=cur*quick_pow(b,n-i)%mod;
        cur=cur*C(2*n-2-i,n-2)%mod;
        ans=(ans+cur)%mod;
    }
    for (i=2;i<=n;i++) {
        cur=quick_pow(b,n-1)*r[i]%mod;
        cur=cur*quick_pow(a,n-i)%mod;
        cur=cur*C(2*n-2-i,n-2)%mod;
        ans=(ans+cur)%mod;
    }
    ans=(ans-c*quick_pow(a+b-1,mod-2)%mod+mod)%mod;
    printf("%lld\n",ans);
    return 0;
}

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值