【算法】牛顿迭代法求平方根

本文介绍了牛顿迭代法在求解平方根问题中的应用。通过算法第四版中的公式`t = (c/t + t)/2.0`来理解牛顿迭代法的核心思想——利用切线逼近曲线的根。尽管五次及以上多项式方程无根式解,但牛顿迭代法提供了一种有效的方法。平方根的求解可以转换为解二次方程,公式`t = (c/t + t)/2.0`的来源由此清晰。循环直到误差在允许范围内,即`abs(t - c / t) < err * t`,以确保解的精度。
摘要由CSDN通过智能技术生成

在算法第四版的表1.1.5中计算平方根(牛顿迭代法)的公式,里面有一句 t = (c/t + t)/2.0,这是怎么来的?

        五次及以上多项式方程没有根式解(就是没有像二次方程那样的万能公式),这个是被伽罗瓦用群论做出的最著名的结论。那么这样的公式应该如何求解?

牛顿迭代法:这种方法核心思想是切线是曲线的线性逼近。思路就是不断取切线(不断迭代),用线性方程的根逼近非线性方程f(x)=0的根x^{*}

                        x_{k+1}=x_{k}-\frac{f(x_{k})}{​{f}'(x_{k})}        {f}'(x_{k})\neq 0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值