国际机器学习顶会ICML公布2019年最佳论文奖,ICML两篇最佳论文分别是:
-
《挑战无监督解耦表示中的常见假设》,来自苏黎世联邦理工学院(ETH Zurich)、MaxPlanck 智能系统研究所及谷歌大脑;
-
《稀疏高斯过程回归变分的收敛速度》,来自英国剑桥大学。
ICML第一篇最佳论文的作者来自苏黎世联邦理工学院(ETH Zurich)、MaxPlanck 智能系统研究所及谷歌大脑。
论文标题:挑战无监督解耦表示中的常见假设
Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations
作者:Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Rätsch, Sylvain Gelly, Bernhard Schölkopf, Olivier Bachem
论文地址:http://proceedings.mlr.press/v97/locatello19a/locatello19a.pdf
这是一篇大规模深入研究无监督解耦表示(Disentangled Representation)的论文,对近年来绝大多数的非监督解耦表示方法进行了探索、利用 2.5GPU 年的算力在 7 个数据集上训练了 12000 多个模型。基于大规模的实验结果,研究人员对这一领域的一些假设产生了质疑,并为解耦学习的未来发展方向给出了建议。此外,研究人员还同时发布了研究中所使用的代码和上万个预训练模型,并封装了 disentanglement_lib 供研究者进行实验复现和更深入的探索。