【论文笔记】Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations

这篇论文对无监督解耦表示学习的常见假设进行了质疑,通过大规模实验发现,没有归纳偏置和监督,解耦表示的学习几乎是不可能的。尽管方法能确保聚合后验维度不相关,但表示维度仍可能是相关的。此外,超参数和随机种子的影响可能大于模型选择,且未发现解耦对下游任务样本复杂性降低的证据。论文提出了未来研究的三个关键方向:归纳偏置与监督的作用、解耦表示的实际益处以及多样化的实验设置和数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

国际机器学习顶会ICML公布2019年最佳论文奖,ICML两篇最佳论文分别是:

  • 挑战无监督解耦表示中的常见假设》,来自苏黎世联邦理工学院(ETH Zurich)、MaxPlanck 智能系统研究所及谷歌大脑;

  • 稀疏高斯过程回归变分的收敛速度》,来自英国剑桥大学。

ICML第一篇最佳论文的作者来自苏黎世联邦理工学院(ETH Zurich)、MaxPlanck 智能系统研究所及谷歌大脑。


论文标题:挑战无监督解耦表示中的常见假设

                     Challenging Common Assumptions in the Unsupervised Learning of                                                        Disentangled Representations

作者:Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Rätsch, Sylvain Gelly, Bernhard Schölkopf, Olivier Bachem

论文地址:http://proceedings.mlr.press/v97/locatello19a/locatello19a.pdf


       这是一篇大规模深入研究无监督解耦表示(Disentangled Representation)的论文,对近年来绝大多数的非监督解耦表示方法进行了探索、利用 2.5GPU 年的算力在 7 个数据集上训练了 12000 多个模型。基于大规模的实验结果,研究人员对这一领域的一些假设产生了质疑,并为解耦学习的未来发展方向给出了建议。此外,研究人员还同时发布了研究中所使用的代码和上万个预训练模型,并封装了 disentanglement_lib 供研究者进行实验复现和更深入的探索。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值