YOLOV5训练问题记载

前言

  • 最近在学习YOLO算法,做目标识别,刚刚学完理论知识,准备实战,发现论坛已经有很好的教程了,Yolov5保姆级教程YOLOV5源代码
  • 在教程的指导下,程序成功跑起来了,但是在此之前有两个小问题,可能会碰到的,就是yolov5s.ptArial.ttf下载问题。
  • 当然这两个问题在会科学上网的程序员面前不是问题,但是这里我还是记载一下

yolov5s.pt下载问题

  • 在首次运行detect.py文件时,可能会报No such file or directory: 'yolov5s.pt',这是因为访问GitHub下载模型时超时,这里提供YOLOV5nYOLOV5sYOLOV5mYOLOV5lYOLOV5x下载方式。
  • 考虑到网盘下载速度,这里使用天翼网盘,速度相对百度网盘会快一些。
  • 下载完成后只需要放到项目文件夹下,就不会报错了,代码中默认的是YOLOV5s模型。

Arial.ttf下载问题

  • 其次可能会在下载Arial.ttf时报错,Arial.ttf需要放置在C:\Users\lenovo\AppData\Roaming\Ultralytics\
  • Arial.ttf下载

结语

  • 我在训练YOLOV5模型的过程将这两个问题解决后程序成功跑了起来,至于后续如何标注数据,制造自己的数据集,上面推荐的文章中写的很清楚了。
### YOLOv5 训练结果分析解释 #### 精确率与训练的关系 `train.py`不仅负责处理训练图像,还涉及模型性能评估的关键部分。每次迭代结束时,程序会使用验证集测试当前模型版本的表现,并计算多个评价指标,包括但不限于精确度(Precision),召回率(Recall), 和 mAP (mean Average Precision)[^1]。 这些评估操作对于监控模型的学习进度至关重要,能够帮助识别过拟合或欠拟合等问题,从而指导调整超参数或其他配置选项以优化最终效果[^2]。 #### 输出文件解析 当YOLOv5完成一轮完整的训练周期后,会在指定目录下生成一系列用于记录训练过程及其成果的数据文件。其中包括: - **weights/** 文件夹内保存着不同阶段产生的权重文件; - `results.txt`: 文本日志,记载了每轮次的主要统计数值变化趋势; - 各种图表形式的结果展示,便于直观观察损失函数下降情况、各类别检测精度等重要信息的变化轨迹。 #### 关键性能指标说明 mAP@0.5:0.95 是衡量目标检测算法准确性的一个综合标准,在不同的交并比(IoU)阈值范围内取平均值得出。具体来说,是从 IoU=0.5 到 IoU=0.95 之间每隔 0.05 取一个点求得的 AP 值的均值[^3]。 此度量方法能全面反映模型在各种条件下的表现优劣程度,因此被广泛应用于学术研究和技术开发领域作为比较基准之一。 ```python def calculate_mAP(predictions, ground_truths): """ Calculate the mean average precision over a range of IOU thresholds. Args: predictions (list): List of predicted bounding boxes and confidence scores. ground_truths (list): List of true object locations. Returns: float: The calculated mAP value across all classes at multiple IOUs from 0.5 to 0.95 with step size 0.05. """ iou_thresholds = np.arange(0.5, 1.0, 0.05) ap_scores = [] for thresh in iou_thresholds: # Compute AP score per class here... pass return sum(ap_scores)/len(iou_thresholds) ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

羽星_s

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值