引言
PID控制器1自20世纪初诞生以来,因其结构简单、鲁棒性强、无模型等特点,被广泛应用于各个工程领域2。随着线性代数的迅速发展,对李雅普诺夫稳定性分析的日益重视,以及最优控制理论的兴起,各种基于模型的控制方案不断发展,包括自适应控制、滑模控制和最优控制方法,如线性二次型调节器(LQR)和模型预测控制(MPC)。尽管在过去的半个世纪里,控制理论稳步发展,但PID控制至今仍是工程应用中使用最广泛的方法3。除了PID控制在工程应用中的广泛接受和声誉之外,这种现象背后的根本原因在于大多数控制方案本质上是各种阶数的系统状态(或状态误差)的线性或非线性组合,从根本上属于PID控制的范畴。此外,这些方案通常严重依赖于精确的建模,具有更多的调优参数,或者需要更多的计算能力。此外,许多新的控制算法结构复杂,这使得工程从业者很难彻底理解其原理并将其有效地应用于实际生产任务。相比之下,在今天的工程实践中,简单的PID控制仍然更容易理解和更容易实现。
PID控制需要一组有效的参数来确保系统按预期运行。相应地,已经建立了参数整定的经验方法,如齐格勒-尼科尔斯法45和继电器整定法 6。然而,这些经验方法可能效率低下且复杂,并且进一步优化参数的空间。此外,也有一些基于线性系统模型的调谐方法 789。尽管如此,由于模型中的不确定性、不精确性、未知动力学和干扰,在频域中准确分析系统仍然是一个挑战。因此,这些方法在工程PID控制实践中尚未得到广泛采用或应用。
在经典控制理论中,系统对不同指令的跟踪能力是由开环系统的“类型”定性决定的。在这种思想的影响下,PID控制器的组成部分通常被单独地定性地解释为抵消稳态误差。然而,情况真的是这样吗,尤其是在参数调优期间?受自抗扰控制(ADRC)范式的启发10,本文从误差系统的状态反馈和集总扰动补偿的角度重新解释了PID控制,并提出了基于该方法的整定方法。目的是为工程控制从业者提供一个理解、设计和调整控制器的新视角。
非齐次常系数线性微分方程解的运动
为了使分析更一般,考虑如下的非齐次线性微分方程
x
(
n
)
+
∑
i
=
0
n
−
1
a
i
x
(
i
)
=
f
x^{(n)}+\sum_{i=0}^{n-1}a_ix^{(i)}=f
x(n)+i=0∑n−1aix(i)=f
其中
x
x
x 是状态变量,
∙
(
n
)
=
d
n
∙
d
t
n
\bullet^{(n)}=\frac{\mathrm{d}^n\bullet}{\mathrm{d}t^n}
∙(n)=dtndn∙,
f
=
f
(
x
,
⋯
,
x
(
n
−
1
)
,
t
)
f=f(x,\cdots,x^{(n-1)},t)
f=f(x,⋯,x(n−1),t)表示系统的未知动态,常数
a
i
,
i
=
0
,
1
,
⋯
,
n
−
1
a_i,i=0,1,\cdots, n-1
ai,i=0,1,⋯,n−1满足赫尔维兹多项式
s
n
+
∑
i
=
0
n
−
1
a
i
s
i
=
∏
i
=
1
n
(
s
+
p
i
)
s^n+\sum_{i=0}^{n-1}a_is^{i}=\prod_{i=1}^n(s+p_i)
sn+∑i=0n−1aisi=∏i=1n(s+pi),其中实部
R
e
(
p
i
)
>
0
\mathrm{Re}(p_i)>0
Re(pi)>0
取上式的拉式变换有
X
(
s
)
=
1
s
n
+
∑
i
=
0
n
−
1
a
i
s
i
F
(
s
)
\begin{aligned} X(s)=\frac{1}{s^n+\sum_{i=0}^{n-1}a_is^{i}}F(s)\end{aligned}
X(s)=sn+∑i=0n−1aisi1F(s)
显然当系统的未知动态
f
f
f有界时,状态量也总是有界的。
为了使分析更明确简单,考虑系统的所有极点都是重根的情况,即
p
i
=
ω
∈
R
+
p_i=\omega\in \mathbb{R}^+
pi=ω∈R+。此时系统可以被改写为
x
(
n
)
=
−
∑
i
=
1
n
C
n
i
ω
i
x
(
n
−
i
)
+
f
\begin{aligned} x^{(n)}=-\sum_{i=1}^nC_n^i\omega^ix^{(n-i)}+f\end{aligned}
x(n)=−i=1∑nCniωix(n−i)+f
其中
C
n
i
=
n
!
(
n
−
i
)
!
i
!
C_n^i=\frac{n!}{(n-i)!i!}
Cni=(n−i)!i!n!。容易得到该系统的解
x
=
x
n
+
x
f
\begin{aligned} x={}&x_n+x_f\end{aligned}
x=xn+xf
其中
x
n
x_n
xn是齐次方程的通解 (
f
=
0
f=0
f=0, 对应于系统的零输入响应),
x
f
x_f
xf是非齐次方程在零初始条件下的特解(对应于系统的零状态响应)。他们的具体形式如下:
x
n
=
e
−
ω
(
t
−
t
0
)
∑
i
=
0
n
−
1
t
i
i
!
∑
j
=
0
i
C
i
j
ω
i
−
j
x
(
j
)
(
0
)
x
f
=
∫
t
0
t
(
t
−
τ
)
n
−
1
(
n
−
1
)
!
f
(
τ
)
e
−
ω
(
t
−
τ
)
d
τ
\begin{aligned} x_n={}&e^{-\omega (t-t_0)}\sum_{i=0}^{n-1}\frac{t^i}{i!}\sum_{j=0}^iC_i^j\omega^{i-j}x^{(j)}(0)\\ x_f={}&\int_{t_0}^t\frac{(t-\tau)^{n-1}}{(n-1)!}f(\tau)e^{-\omega(t-\tau)}\mathrm{d}\tau\end{aligned}
xn=xf=e−ω(t−t0)i=0∑n−1i!tij=0∑iCijωi−jx(j)(0)∫t0t(n−1)!(t−τ)n−1f(τ)e−ω(t−τ)dτ
为了简单,这里我们省略了函数的部分自变量
f
(
t
)
=
f
(
x
(
t
)
,
⋯
,
x
(
n
−
1
)
(
t
)
,
t
)
f(t)=f(x(t),\cdots,x^{(n-1)}(t),t)
f(t)=f(x(t),⋯,x(n−1)(t),t)。显然,系统的零输入响应总是收敛的,解的最终运动状态仅取决于零状态响应
x
f
x_f
xf。对其进行放缩,有
∣
x
f
∣
=
∣
∫
t
0
t
(
t
−
τ
)
n
−
1
(
n
−
1
)
!
f
(
τ
)
e
−
ω
(
t
−
τ
)
d
τ
∣
≤
∫
t
0
t
(
t
−
τ
)
n
−
1
(
n
−
1
)
!
∣
f
(
τ
)
∣
e
−
ω
(
t
−
τ
)
d
τ
≤
∫
t
0
t
(
t
−
τ
)
n
−
1
(
n
−
1
)
!
sup
s
≥
τ
∣
f
(
s
)
∣
e
−
ω
(
t
−
τ
)
d
τ
\begin{aligned} |x_f|={}&\left|\int_{t_0}^t\frac{(t-\tau)^{n-1}}{(n-1)!}f(\tau)e^{-\omega(t-\tau)}\mathrm{d}\tau\right|\notag\\ \leq{}&\int_{t_0}^t\frac{(t-\tau)^{n-1}}{(n-1)!}|f(\tau)|e^{-\omega(t-\tau)}\mathrm{d}\tau\notag\\ \leq{}&\int_{t_0}^t\frac{(t-\tau)^{n-1}}{(n-1)!}\sup_{s\geq\tau}|f(s)|e^{-\omega(t-\tau)}\mathrm{d}\tau\end{aligned}
∣xf∣=≤≤
∫t0t(n−1)!(t−τ)n−1f(τ)e−ω(t−τ)dτ
∫t0t(n−1)!(t−τ)n−1∣f(τ)∣e−ω(t−τ)dτ∫t0t(n−1)!(t−τ)n−1s≥τsup∣f(s)∣e−ω(t−τ)dτ
取上式的极限,有
lim
t
→
+
∞
∣
x
f
∣
≤
lim
t
→
+
∞
∫
t
0
t
(
t
−
τ
)
n
−
1
(
n
−
1
)
!
sup
s
≥
τ
∣
f
(
s
)
∣
e
ω
(
τ
−
t
0
)
d
τ
e
ω
(
t
−
t
0
)
=
lim
t
→
+
∞
∫
t
0
t
(
t
−
τ
)
n
−
2
(
n
−
2
)
!
sup
s
≥
τ
∣
f
(
s
)
∣
e
ω
(
τ
−
t
0
)
d
τ
ω
e
ω
(
t
−
t
0
)
⋮
=
lim
t
→
+
∞
∫
t
0
t
sup
s
≥
τ
∣
f
(
s
)
∣
e
ω
(
τ
−
t
0
)
d
τ
ω
n
−
1
e
ω
(
t
−
t
0
)
=
lim
t
→
+
∞
sup
s
≥
t
∣
f
(
s
)
∣
e
ω
(
t
−
t
0
)
ω
n
e
ω
(
t
−
t
0
)
=
1
ω
n
lim sup
t
→
+
∞
∣
f
(
t
)
∣
\begin{aligned} \lim_{t\to+\infty}|x_f|\leq{}&\lim_{t\to+\infty}\frac{\int_{t_0}^t\frac{(t-\tau)^{n-1}}{(n-1)!}\sup_{s\geq\tau}|f(s)|e^{\omega(\tau-t_0)}\mathrm{d}\tau}{e^{\omega (t-t_0)}}\notag\\ ={}&\lim_{t\to+\infty}\frac{\int_{t_0}^t\frac{(t-\tau)^{n-2}}{(n-2)!}\sup_{s\geq\tau}|f(s)|e^{\omega (\tau-t_0)}\mathrm{d}\tau}{\omega e^{\omega (t-t_0)}}\notag\\ \vdots{}&\notag\\ ={}&\lim_{t\to+\infty}\frac{\int_{t_0}^t\sup_{s\geq\tau}|f(s)|e^{\omega (\tau-t_0)}\mathrm{d}\tau}{\omega^{n-1} e^{\omega (t-t_0)}}\notag\\ ={}&\lim_{t\to+\infty}\frac{\sup_{s\geq t}|f(s)|e^{\omega (t-t_0)}}{\omega^n e^{\omega (t-t_0)}}\notag\\ ={}&\frac{1}{\omega^n}\limsup_{t\to+\infty}|f(t)|\end{aligned}
t→+∞lim∣xf∣≤=⋮===t→+∞limeω(t−t0)∫t0t(n−1)!(t−τ)n−1sups≥τ∣f(s)∣eω(τ−t0)dτt→+∞limωeω(t−t0)∫t0t(n−2)!(t−τ)n−2sups≥τ∣f(s)∣eω(τ−t0)dτt→+∞limωn−1eω(t−t0)∫t0tsups≥τ∣f(s)∣eω(τ−t0)dτt→+∞limωneω(t−t0)sups≥t∣f(s)∣eω(t−t0)ωn1t→+∞limsup∣f(t)∣
因此系统零平衡渐近稳定的一个充分条件是
lim sup
t
→
+
∞
∣
f
(
t
)
∣
=
0
\limsup_{t\to+\infty}|f(t)|=0
limsupt→+∞∣f(t)∣=0。此外,当
f
ˉ
:
=
lim sup
t
→
+
∞
∣
f
(
t
)
∣
\bar f:=\limsup_{t\to+\infty}|f(t)|
fˉ:=limsupt→+∞∣f(t)∣很小时,系统的最终状态也很小。该系统的传递函数为
G
(
s
)
=
X
(
s
)
F
(
s
)
=
1
(
s
+
ω
)
n
\begin{aligned} G(s)=\frac{X(s)}{F(s)}=\frac{1}{(s+\omega)^n}\end{aligned}
G(s)=F(s)X(s)=(s+ω)n1
显然
x
x
x是
f
f
f的
n
n
n阶低通滤波输出,滤波器输出增益为
ω
−
n
\omega^{-n}
ω−n。因此系统的输出取决于两个因素:
-
带宽 ω \omega ω: 带宽越大,滤波器的增益越小,最终的输出也就越小;
-
未知动态 f f f: f f f越小,输出也就越小
带宽受系统的物理性质的限制,通常有一个上限。为了使解的最终值最小化,未知的动态 f f f应该尽可能的小。
状态反馈和集总扰动补偿
从上一节的分析中,我们可以很容易地得出以下结论:对于具有未知动力学的有界输入有界输出(BIBO)系统,其最终收敛行为取决于未知动力学 f f f。因此,在本节中,我们提出了一种补偿系统未知动态的方案,以获得更好的控制性能。
控制设计和参数整定
对于系统状态
x
x
x,控制输入
u
u
u,未知的集总扰动
f
=
f
(
x
,
⋯
,
x
(
n
−
1
)
,
u
,
t
)
f=f(x,\cdots,x^{(n-1)},u,t)
f=f(x,⋯,x(n−1),u,t)以及输出系数
b
≠
0
b\neq 0
b=0,非自制系统被描述如下:
x
(
n
)
=
f
+
b
u
,
n
∈
N
+
\begin{aligned} x^{(n)} = f+bu,n\in\mathbb{N}^+\end{aligned}
x(n)=f+bu,n∈N+
内模原理揭示了获得良好控制性能的关键在于对未知的集总扰动
f
f
f进行补偿。这里,
f
f
f包含未知动态和扰动等不确定信号。显然,几乎不可能毫无错误地观察到
f
f
f;因此,必须设计一个合理简单的观测器来适当地补偿集总扰动。同时,我们需要稳定齐次系统(
f
=
0
f=0
f=0)。为此,我们将控制输入
u
u
u分成两个部分,如下所示
u
=
1
b
(
u
x
−
f
^
)
\begin{aligned} u=\frac{1}{b}(u_x-\hat{f})\end{aligned}
u=b1(ux−f^)
其中
f
^
\hat{f}
f^用于估计(观察)和补偿未知的集总扰动
f
f
f和
u
x
u_x
ux,称为齐次控制器,用于驱动整个齐次系统收敛。基于前一节的分析,设计
u
x
=
−
∑
i
=
0
n
−
1
a
i
x
(
i
)
\begin{aligned} u_x=-\sum_{i=0}^{n-1}a_ix^{(i)}\end{aligned}
ux=−i=0∑n−1aix(i)
并定义观测误差为
f
~
:
=
f
−
f
^
\begin{aligned} \tilde{f}:=f-\hat{f}\end{aligned}
f~:=f−f^
将控制信号和观测误差带入系统中,有
x
(
n
)
−
u
x
=
f
~
\begin{aligned} x^{(n)}-u_x=\tilde{f}\end{aligned}
x(n)−ux=f~
观测部分被设计为
f
^
=
ω
f
(
x
(
n
−
1
)
−
∫
0
t
u
x
d
t
)
\begin{aligned} \hat f = \omega_f\left(x^{(n-1)} - \int_0^tu_x\mathrm{d}t\right)\end{aligned}
f^=ωf(x(n−1)−∫0tuxdt)
将系统模型带入上式并进行恒等变换有
f
^
=
ω
f
∫
0
t
f
~
d
t
=
ω
f
∫
0
t
(
f
−
f
^
)
d
t
\begin{aligned} \hat f=\omega_f \int_0^t\tilde{f}\mathrm{d}t=\omega_f \int_0^t\left(f-\hat{f}\right)\mathrm{d}t\end{aligned}
f^=ωf∫0tf~dt=ωf∫0t(f−f^)dt
为简单起见,这里省略了 ω f x ( n − 1 ) ( 0 ) \omega_f x^{(n-1)}(0) ωfx(n−1)(0)一项。由于它可以被认为是未知集总扰动f的一部分,因此这种省略并不影响结论。在本节后面的分析中省略积分初值的基本原理与这个解释是一致的,不再赘述。
对上式在零初始条件下作拉普拉斯变换,该观测器的传递函数为
G
o
(
s
)
=
F
^
(
s
)
F
(
s
)
=
ω
f
s
+
ω
f
\begin{aligned} G_o(s)=\frac{\hat{F}(s)}{F(s)}=\frac{\omega_f}{s+\omega_f}\end{aligned}
Go(s)=F(s)F^(s)=s+ωfωf
观测误差为
f
~
=
f
−
ω
f
∫
0
t
f
~
d
t
\begin{aligned} \tilde{f}=f-\omega_f\int_0^t\tilde{f}\mathrm{d}t\end{aligned}
f~=f−ωf∫0tf~dt
误差传递函数
G
e
(
s
)
=
F
~
(
s
)
F
(
s
)
=
s
s
+
ω
f
\begin{aligned} G_e(s)=\frac{\tilde{F}(s)}{F(s)}=\frac{s}{s+\omega_f}\end{aligned}
Ge(s)=F(s)F~(s)=s+ωfs
可见,观测器带宽
ω
f
\omega_f
ωf影响观测器的性能。带宽越大,观测器的传递函数越接近于1,观测误差越小,反之亦然。进一步,得到整个系统的传递函数为
G
(
s
)
=
X
(
s
)
F
(
s
)
=
s
(
s
n
+
∑
i
=
0
n
−
1
a
i
s
i
)
(
s
+
ω
f
)
\begin{aligned} G(s)=\frac{X(s)}{F(s)}=\frac{s}{(s^n+\sum_{i=0}^{n-1}a_is^{i})(s+\omega_f)}\end{aligned}
G(s)=F(s)X(s)=(sn+∑i=0n−1aisi)(s+ωf)s
噪声对控制性能的影响不容忽视。为了找到最优的控制参数,需要对增益引起的噪声放大的影响进行定性分析。在工程实践中,几乎不可能无误差地测量每个状态变量;因此,测量值定义如下
z
i
=
x
(
i
)
+
w
i
,
i
=
0
,
1
,
⋯
,
n
−
1
\begin{aligned} z_i = x^{(i)}+w_i,i=0,1,\cdots, n-1\end{aligned}
zi=x(i)+wi,i=0,1,⋯,n−1
其中
w
i
w_i
wi表示测量噪声。用
z
i
z_i
zi替换控制器中的
x
i
x_i
xi得到实际的控制信号如下
u
=
1
b
(
u
x
+
u
w
−
f
^
−
w
^
)
\begin{aligned} u=\frac{1}{b}(u_x+u_w-\hat{f}-\hat{w})\end{aligned}
u=b1(ux+uw−f^−w^)
其中
u
w
=
−
∑
i
=
0
n
−
1
a
i
w
n
−
i
,
w
^
=
ω
f
(
w
n
−
1
−
∫
0
t
u
w
d
t
)
≈
ω
f
w
n
−
1
\begin{aligned} u_w&=-\sum_{i=0}^{n-1}a_iw_{n-i},\\ \hat{w}&=\omega_f\left(w_{n-1} - \int_0^tu_w\mathrm{d}t\right)\approx \omega_f w_{n-1}\end{aligned}
uww^=−i=0∑n−1aiwn−i,=ωf(wn−1−∫0tuwdt)≈ωfwn−1
将考虑噪声的控制信号带入系统中并进行拉式变换,有
X
(
s
)
=
s
(
F
(
s
)
+
U
x
(
s
)
−
W
^
(
s
)
(
s
n
+
∑
i
=
0
n
−
1
a
i
s
i
)
(
s
+
ω
f
)
=
ω
f
U
w
(
s
)
(
s
n
+
∑
i
=
0
n
−
1
a
i
s
i
)
(
s
+
ω
f
)
+
s
(
F
(
s
)
+
U
w
(
s
)
−
ω
f
W
n
−
1
)
(
s
n
+
∑
i
=
0
n
−
1
a
i
s
i
)
(
s
+
ω
f
)
≈
s
(
F
(
s
)
+
U
w
(
s
)
−
ω
f
W
n
−
1
)
(
s
n
+
∑
i
=
0
n
−
1
a
i
s
i
)
(
s
+
ω
f
)
\begin{aligned} X(s)={}&\frac{s(F(s)+U_x(s)-\hat{W}(s)}{(s^n+\sum_{i=0}^{n-1}a_is^{i})(s+\omega_f)}\notag\\ ={}&\frac{\omega_fU_w(s)}{(s^n+\sum_{i=0}^{n-1}a_is^{i})(s+\omega_f)}\notag\\ &+\frac{s(F(s)+U_w(s)-\omega_fW_{n-1})}{(s^n+\sum_{i=0}^{n-1}a_is^{i})(s+\omega_f)}\notag\\ \approx{}&\frac{s(F(s)+U_w(s)-\omega_fW_{n-1})}{(s^n+\sum_{i=0}^{n-1}a_is^{i})(s+\omega_f)}\end{aligned}
X(s)==≈(sn+∑i=0n−1aisi)(s+ωf)s(F(s)+Ux(s)−W^(s)(sn+∑i=0n−1aisi)(s+ωf)ωfUw(s)+(sn+∑i=0n−1aisi)(s+ωf)s(F(s)+Uw(s)−ωfWn−1)(sn+∑i=0n−1aisi)(s+ωf)s(F(s)+Uw(s)−ωfWn−1)
由上式可知,
w
^
\hat{w}
w^中部分高频测量噪声经过积分和低通滤波后被滤除,其余部分与齐次控制器的噪声
u
w
u_w
uw一起影响整个闭环系统。因此,在参数调谐时,应根据噪声频率仔细选择带宽。一种合理的方法是将齐次控制器带宽设置小于观测器带宽,以尽量减少噪声对系统性能的影响。这类似于分离原理,观测器和同构控制器的参数可以分开设计,而不考虑它们之间的耦合。我们可以简单地假设齐次控制器的参考只决定系统的极点,而观测器参数只决定观测器的带宽。这样,将一个系统的闭环整形过程分解为两个相对低阶的闭环系统的整定。然而,对于齐次控制器,仍然有多个参数需要调优。本文建议将均质系统的极点配置为相同的值11,即
u
x
=
−
∑
i
=
1
n
C
n
i
ω
i
x
(
n
−
i
)
\begin{aligned} u_x=-\sum_{i=1}^nC_n^i\omega^ix^{(n-i)}\end{aligned}
ux=−i=1∑nCniωix(n−i)
这种方法的好处是显而易见的:整个同构控制器只有一个参数
ω
\omega
ω。它的物理意义及其倒数
T
=
1
ω
T=\frac{1}{\omega}
T=ω1也很清楚,表示动态响应的带宽和时间常数。此外,为了从PID控制器获得更好的性能,最好知道控制器的输入系数
b
b
b,即使只是一个近似的值。
PI和PID控制器
在上面的分析中,我们基本上研究了“广义PID”控制器的各个组成部分的功能,即用于稳定齐次系统的状态反馈部分和用于补偿集总扰动的观测部分。之所以用“广义PID”来描述上述控制器,是因为它仅仅是PID控制器对二阶系统的高阶扩展和推广。通过简单的简化,可以推导出一阶系统的PI控制器和二阶系统的PID控制器。
首先,将系统简化为一阶系统
x
˙
=
f
+
b
u
\begin{aligned} \dot{x}= f+bu\end{aligned}
x˙=f+bu
对应地,齐次控制器和扰动观测器被设计为
u
x
=
−
a
0
x
f
^
=
−
ω
f
∫
0
t
u
x
d
t
\begin{aligned} u_x={}&-a_0 x\\ \hat f ={}& -\omega_f\int_0^tu_x\mathrm{d}t\end{aligned}
ux=f^=−a0x−ωf∫0tuxdt
将它们带入控制器中,有:
u
=
1
b
(
−
a
0
x
−
ω
f
a
0
∫
0
t
x
d
t
)
\begin{aligned} u={}&\frac{1}{b}\left(-a_0 x-\omega_fa_0\int_0^t x\mathrm{d}t\right)\end{aligned}
u=b1(−a0x−ωfa0∫0txdt)
显然上式是一个PI控制器(
k
p
=
a
0
,
k
i
=
ω
f
a
0
k_p=a_0, k_i=\omega_fa_0
kp=a0,ki=ωfa0).
同理,当系统被简化为二阶时
x
¨
=
f
+
b
u
\begin{aligned} \ddot{x}= f+bu\end{aligned}
x¨=f+bu
因此,有齐次控制器和集总扰动观测器
u
x
=
−
a
1
x
˙
−
a
0
x
f
^
=
ω
f
(
x
˙
−
∫
0
t
u
x
d
t
)
\begin{aligned} u_x={}&-a_1\dot{x}-a_0 x\\ \hat f ={}& \omega_f\left(\dot{x} - \int_0^tu_x\mathrm{d}t\right)\end{aligned}
ux=f^=−a1x˙−a0xωf(x˙−∫0tuxdt)
将它们带入控制器中,有:
u
=
1
b
(
−
a
1
x
˙
−
a
0
x
−
ω
f
(
x
˙
−
∫
0
t
(
−
a
1
x
˙
−
a
0
x
)
d
t
)
)
=
1
b
(
−
(
a
1
+
ω
f
)
x
˙
−
(
a
0
+
ω
f
a
1
)
x
−
ω
f
a
0
∫
0
t
x
d
t
)
\begin{aligned} u={}&\frac{1}{b}\left(-a_1\dot{x}-a_0 x-\omega_f\left(\dot{x}- \int_0^t (-a_1\dot{x}-a_0 x)\mathrm{d}t\right)\right)\notag\\ ={}&\frac{1}{b}\left(-(a_1+\omega_f)\dot{x}-(a_0+\omega_fa_1) x-\omega_fa_0\int_0^tx\mathrm{d}t\right)\end{aligned}
u==b1(−a1x˙−a0x−ωf(x˙−∫0t(−a1x˙−a0x)dt))b1(−(a1+ωf)x˙−(a0+ωfa1)x−ωfa0∫0txdt)
显然上式是一个PI控制器(
k
d
=
a
1
+
ω
f
,
k
p
=
a
0
+
ω
f
a
1
,
k
i
=
ω
f
a
0
k_d=a_1+\omega_f,k_p=a_0+\omega_fa_1,k_i=\omega_fa_0
kd=a1+ωf,kp=a0+ωfa1,ki=ωfa0).
讨论和总结
本文利用常系数非齐次线性微分方程解的运动,重新解释了PID控制器的原理。PID控制器由两个部分组成:齐次系统的状态反馈和集总扰动的补偿。在此基础上,提出了一种PID控制器的参数整定方案。对于齐次系统,适当的极点位置足以达到期望的收敛性。对于集总扰动的补偿,我们只需要调整观测器的带宽。PID补偿集总扰动的方法虽然简单,但并不总是最合适的。幸运的是,我们现在清楚地了解到控制器本质上由两部分组成:齐次系统控制器和集总扰动观测器。因此,我们可以选择不同的方案来观测和补偿集总扰动。在这种情况下,我们向工程从业人员推荐ADRC范。下面,我们概述了ADRC中扩展状态观测器(ESO10,包括线性ESO (LESO)11和广义ESO (GESO)12)的优点
-
ESO对系统的先验知识要求很低,只需要系统阶数、输入系数和输出信号。
-
并非系统的所有状态变量都是可用的,对输出进行数值微分以求得近似导数通常会导致噪声的放大。ESO作为一种基于输出反馈的观测器,既能观测系统的集总扰动,又能观测系统的所有状态变量。
-
对于具有不匹配扰动的多输入、多输出系统,用常规方法难以估计扰动。然而,GESO提供了一个可行的解决方案。
-
ESO的参数通常只决定观测器的性能。我们可以独立地为观测器和控制器分配零点和极点,这意味着分离原理在大多数情况下仍然适用。
在这里,我们总结控制设计过程尝试给出一个较为通用的设计步骤
-
推导控制问题误差的数学模型:理想情况下,误差模型应该是一个积分级联结构的形式,因为这简化了控制器和观测器的设计。为此,输入-输出反馈线性化13通常是一个有用的理论工具。此外,对于某些控制任务,打破传统思维并在其它的维度上构建模型对于控制器设计而言可能是事半功倍的
-
将误差模型分解为输入信号和集总扰动:为了更结构化的控制设计方法,将误差系统分解为这两个部分是很重要的。
-
控制方案的选择和控制器的设计:如果误差系统的数学模型简单,并且所有相关信息都是已知的,则可以直接设计控制律,而不需要积分器或观测器。对于更复杂的情况,可以采用本文介绍的PID控制器或自抗扰控制范式。
参考文献
N. Minorsky., “Directional stability of automatically steered bodies,” Journal of the American Society for Naval Engineers, vol. 34, no. 2, pp. 280–309, 1922. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1559-3584.1922.tb04958.x ↩︎
K. H. Ang, G. Chong, and Y. Li, “Pid control system analysis, design, and technology,” IEEE Transactions on Control Systems Technology, vol. 13, no. 4, pp. 559–576, 2005. ↩︎
S. B. Joseph, E. G. Dada, A. Abidemi, D. O. Oyewola, and B. M. Khammas, “Metaheuristic algorithms for pid controller parameters tuning: review, approaches and open problems,” Heliyon, vol. 8, no. 5, p. e09399, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2405844022006879 ↩︎
J. G. Ziegler and N. B. Nichols, “Optimum Settings for Automatic Controllers,” Transactions of the American Society of Mechanical Engineers, vol. 64, no. 8, pp. 759–765, 12 1942. [Online]. Available: https://doi.org/10.1115/1.4019264 ↩︎
J. G. Ziegler and N. B. Nichols, “Process Lags in Automatic-Control Circuits,” Transactions of the American Society of Mechanical Engineers, vol. 65, no. 5, pp. 433–440, 12 1943. [Online]. Available: https://doi.org/10.1115/1.4018788 ↩︎
K. Åström and T. Hägglund, “Automatic tuning of simple regulators with specifications on phase and amplitude margins,” Automatica, vol. 20, no. 5, pp. 645–651, 1984. [Online]. Available: https://www.sciencedirect.com/science/article/pii/0005109884900141 ↩︎
Q.-G. Wang, T.-H. Lee, H.-W. Fung, Q. Bi, and Y. Zhang, “Pid tuning for improved performance,” IEEE Transactions on Control Systems Technology, vol. 7, no. 4, pp. 457–465, 1999. ↩︎
R. P. Borase, D. K. Maghade, S. Y. Sondkar, and S. N. Pawar, “A review of pid control, tuning methods and applications,” International Journal of Dynamics and Control, vol. 9, no. 2, pp. 818–827, Jun 2021. [Online]. Available: https://doi.org/10.1007/s40435-020-00665-4 ↩︎
O. A. Somefun, K. Akingbade, and F. Dahunsi, “The dilemma of pid tuning,” Annual Reviews in Control, vol. 52, pp. 65–74, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1367578821000407 ↩︎
J. Han, “From pid to active disturbance rejection control,” IEEE Transactions on Industrial Electronics, vol. 56, no. 3, pp. 900–906, 2009. ↩︎ ↩︎
Z. Gao, “Scaling and bandwidth-parameterization based controller tuning,” in Proceedings of the 2003 American Control Conference, 2003., vol. 6, 2003, pp. 4989–4996. ↩︎ ↩︎
S. Li, J. Yang, W.-H. Chen, and X. Chen, “Generalized extended state observer based control for systems with mismatched uncertainties,” IEEE Transactions on Industrial Electronics, vol. 59, no. 12, pp. 4792– 4802, 2012. ↩︎
H. Khalil, Nonlinear systems (Third Edition). Prentice Hall, 2002. ↩︎