一.简介
大家都知道原始bert预训练模型有两大任务:
1.masked lm:带mask的语言模型
2.next sentence prediction:是否为下一句话
bert模型的训练数据有三部分,如下:
1.字的token embeddings
2.句子的embeddings
3.句子位置的embeddings
下面就简单的构建一个bert的训练数据二.程序
import re
import math
import numpy as np
import random
text = (
'这里是文本。'
)
sentences = re.sub("[.。,“”,!?-]", '', text.lower()).split('n') # 过滤特殊符号
word_list = list("".join(sentences))
# 以下是词典的构建
word2idx = {'[pad]':0, '[cls]':1, '[sep]':2, '[unk]':3, '[mask]':4}
for i, w in enumerate(word_list):
word2idx[w] = i + 5
idx2word = {i : w for i, w in enumerate(word2idx)}
vocab_size = len(word2idx)
token_list = list()
for sentence in sentences:
arr = [word2idx[s] for s in list(sentence)]
token_list.append(arr)
# 数据预处理,
maxlen = 120 # 最大句子长度
max_pred = 5 # 预测每个序列的单词个数
batch_size = 6
n_segments = 2 # 输入的几句话
'''
1.Next Sentence Prediction
50%的情况下,句子B是句子A的下一句,而50%的情况下,B不是A的下一句
2.Masked LM and the Masking Procedure
随机mask一句话中的15% token,拼接2句话
80% 的时间:用[MASK]替换目标单词
10% 的时间:用随机的单词替换目标单词
10% 的时间:不改变目标单词
'''
def build_data():
batch = []
positive = negative = 0
while (positive != (batch_size/2)) or (negative != (batch_size/2)):
# 随机选择句子的index,作为A,B句
tokens_a_index, tokens_b_index = random.randrange(len(sentences)), random.randrange(len(sentences))
tokens_a, tokens_b = token_list[tokens_a_index], token_list[tokens_b_index]
# 拼接A句与B句,格式为:[cls] + A句 + [sep] + B句 + [sep]
input_ids = [word2idx['[cls]']] + tokens_a + [word2idx['[sep]']] + tokens_b + [word2idx['[sep]']]
# 这里是为了表示两个不同的句子,如A句用0表示,B句用1表示
segment_ids = [0] * (1 + len(tokens_a) + 1) + [1] * (len(tokens_b) + 1)
# mask lm,15%随机选择token
n_pred = min(max_pred, max(1, int(len(input_ids) * 0.15))) # 句子中的15%的token
# 15%随机选择的token,去除特殊符号[cls]与[sep]
cand_maked_pos = [i for i, token in enumerate(input_ids) if token != word2idx['[cls]'] and token != word2idx['[sep]']] # 候选masked 位置
random.shuffle(cand_maked_pos)
# 存储被mask的词的位置与token
masked_tokens, masked_pos = [], []
# 对input_ids进行mask, 80%的时间用于mask替换,10%的时间随机替换,10%的时间不替换。
for pos in cand_maked_pos[:n_pred]:
masked_pos.append(pos) # mask的位置
masked_tokens.append(input_ids[pos]) # mask的token
if random.random() < 0.8: # 80%的时间用mask替换
input_ids[pos] = word2idx['[mask]']
elif random.random() > 0.9: # 10%的时间随机替换
index = random.randint(0, vocab_size - 1)
while index < 5:
index = random.randint(0, vocab_size - 1) # 不包含几个特征符号
input_ids[pos] = index
# 进行padding,input_ids与segment_ids补齐到最大长度max_len
n_pad = maxlen - len(input_ids)
input_ids.extend([0] * n_pad)
segment_ids.extend([0] * n_pad)
#print('n_pad:{}'.format(n_pad))
# 不同句子中的mask长度不同,所以需要进行相同长度补齐
if max_pred > n_pred:
n_pad = max_pred - n_pred
masked_tokens.extend([0] * n_pad)
masked_pos.extend([0] * n_pad)
if ((tokens_a_index + 1) == tokens_b_index) and (positive < (batch_size / 2)):
batch.append([input_ids, segment_ids, masked_tokens, masked_pos, True]) # isnext
positive += 1
elif ((tokens_a_index + 1) != tokens_b_index) and (negative < (batch_size / 2)):
batch.append([input_ids, segment_ids, masked_tokens, masked_pos, False]) # notnext
negative += 1
return batch
'''
构建的数据里除了input_ids,segment_ids外,还有masked_tokens,masked_pos被mask掉的字和其位置(用于bert训练时用),isNext是否为下一句。
'''
batch = build_data()
input_ids, segment_ids, masked_tokens, masked_pos, isNext = zip(*batch)
class MyDataset(Data.Dataset):
def __init__(self, input_ids, segment_ids, masked_tokens, masked_pos, isNext):
self.input_ids = input_ids
self.segment_ids = segment_ids
self.masked_tokens = masked_tokens
self.masked_pos = masked_pos
self.isNext = isNext
def __len__(self):
return len(self.input_ids)
def __getitem__(self, idx):
return self.input_ids[idx], self.segment_ids[idx], self.masked_tokens[idx], self.masked_pos[idx], self.isNext[idx]
loader = Data.DataLoader(MyDataset(input_ids, segment_ids, masked_tokens, masked_pos, isNext), batch_size, shuffle=True)
当然这上面还缺了一个信息就是position embeddings,这个可以在bert模型中进行设置,如下:
#位置信息
pos = torch.arange(0, src_len).unsqueeze(0).repeat(batch_size, 1)