- 博客(49)
- 收藏
- 关注
原创 jupyterlab下使用tensorflow+插件安装
1.安装anaconda下载地址2.创建tensorflow环境1.python版本按照自己的需求conda create --name tensorflow python=3.7**2.激活tensorflow的环境:activate tensorflow#记住在这个环境下重新下载工具包,或者说当运行提示没有相应包时,需要先进入这个环境下载,外部下载无效2.在该环境下下载tensorflow以及相应工具包详细内容可以参看Anaconda下安装tensorflow如果出现安装错误,
2020-07-02 15:41:36 1972 1
原创 VS2017搭建FFmpeg+SDL环境及一些问题解决
VS2017搭建FFmpeg+SDL环境及一些问题解决1.下载FFMPEG库https://ffmpeg.zeranoe.com/builds/ ,Dev包含include和lib,Shared包含bin/.dll文件包含三个版本:Static、Shared以及DevStatic — 包含3个应用程序:ffmpeg.exe , ffplay.exe , ffprobe.exe,体积都很大,...
2020-03-31 16:15:55 903
原创 Windows下用FFmpeg+nginx+rtmp搭建直播环境
Windows下用FFmpeg+nginx+rtmp搭建直播环境 实现推流、拉流(超简单教程)1.环境开发环境:windows开发工具:FFmpeg、nginx、nginx-rmtp-module2.准备文件需要的配置文件,这里我就全部整理好了,包括Nginx、nginx-rmtp-module、FFmpeg和实例mp4视频, 大家可以安心下载(可复制网址到浏览器下载):链接:http...
2020-03-15 18:51:25 616 1
转载 HEVC函数入门——建议先看:整个编码流程以及相关的函数
这篇文章一定要先看 转自:http://blog.csdn.net/nb_vol_1/article/details/51144828该作者也是转载,但是没有找到原地址。在此表示对这篇文章作者的感谢。 整个流程可以从compressGOP函数开始着手: 1、compressGOP对一整个图像组(GOP)进行编码,主要是遍历GOP中每一帧,对每一帧进行单独编码 2、每一帧又...
2019-10-31 09:55:25 465
原创 opencv学习(3):在算法设计中使用策略模式
opencv学习(3):在算法设计中使用策略模式一个设计模式是一个可靠的、可重用的方案,用于解决软件设计中频繁出现的问题。策略设计模式的目标是将算法封装在类中。因此可以很容易的替换一个现有的算法,或者把几个算法组合起来进行更复杂的处理,都会更加容易。而且这种模式能够尽可能地将算法的复杂性隐藏在一个直观的编程接口之后,因而有利于算法的部署。比方说,我们需要构建一个简单的算法,它可以鉴别图像中含有...
2019-10-12 11:26:33 222
原创 error LNK1104 无法打开文件opencv_core245d.lib 解决新思路
error LNK1104 无法打开文件opencv_core341d.lib 解决新思路被这个问题折磨了很久,网上看了很多解决办法都不管用,可能每个人出现情况都不太一样,这里提供一种新思路,也是一次偶然机会,测试通过,鼓掌(让我有继续学下去的欲望了!)罪魁祸首就是这个 %(AdditionalLibraryDirectories),虽然并不清楚原因,但是删了之后就运作正常...
2019-10-11 17:00:03 739
原创 opencv常见问题:Microsoft C++ 异常:cv::Exception的解决办法汇总
原创opencv常见问题:Microsoft C++ 异常:cv::Exception的解决第一步:检查环境配置第二步 :有关图片路径问题用”/”,或者用“\”,动手改了一下,没解决,诶呀,这个之前读的也没问题,这个是会引起类似的问题,但是我把图片放在工程里,用的不是绝对路径,所以不影响。第三步 :图片格式这个问题是说可能把格式写成了”XXX.png.png”就是本身已经有扩展名了,但...
2019-10-09 20:41:19 11339 2
原创 关于Visual Studio软件安装和opencv库的安装
关于Visual Studio软件安装和opencv库的安装1 Visual Studio下载与安装Visual Studio 2015/64位下载地址:链接:https://pan.baidu.com/s/1vQdHWvbasrtlNbDe1fDF2g密码: q8gj这里安利一个比较好的公众号:软件安装管家 微信号:rjazgj安装教程直接回复Visual studio即可,...
2019-10-08 20:51:07 1117
转载 主成分分析PCA
对于主成分来说,变量的方差越大,空间中点就越分散,空间中的点越分散,那么它包含的信息就越多(**个人理解:点越分散,信息熵越大,不确定程度越高,从不确定性到确定性,未来能说的信息越多,信息接收者未来可以接收到的信息量越多**)。具体一点说就是因为我们后续的结果对数据的方差十分敏感,取值范围较大的维度会比相对较小的维度造成更大的影响(例如一个在1-100之间变化的维度对结果的影响,比一个0-1的更大),会导致一个偏差较大的结果,所以,将数据转化到相似的范围可以预防这个问题。
2023-02-10 20:38:42 1712
原创 mac 安装docker-compose报错,/usr/local/bin/docker-compose: line 1: {error:Document not found}:
#mac# docker compose 安装问题解决
2022-07-16 16:26:29 17148 1
原创 VS2019解决MSB8036 找不到 Windows SDK 版本 10.0.19041.0
电脑明明安装了Windows SDK,但就是提示找不到:MSB8036 找不到 Windows SDK 版本 10.0.19041.0。请安装所需版本的 WindowsSDK,或者在项目属性页中或通过右键单击解决方案并选择“重定解决方案目标”来更改 SDK 版本。原因:VS确定SDK是通过一个sdkmanifest.xml来找的,以前的SDK版本这个文件都是在windows sdk根目录下,我这里可能是这台机器同时装了VS2017的原因。而新版本的这个文件在SDK根目录是找不到的,所以需要增
2022-03-28 13:36:22 8701 29
原创 算法篇——03贪心算法
贪心算法贪心算法的核心在于每次操作都是局部最优,从而使最终结果全局最优。例1:LeetCode(455):有一群孩子和一堆饼干,每个孩子有一个饥饿度,每个饼干都有一个大小。每个孩子只能吃最多一个饼干,且只有饼干的大小大于孩子的饥饿度时,这个孩子才能吃饱。求解最多有多少孩子可以吃饱。输入两个数组,分别代表孩子饥饿度和饼干大小,输出为最多孩子吃饱数目。Input: [1,2], [1,2,3]Output: 2分析:对于该题而言,饥饿度越小的孩子越容易吃饱。因此,根据贪心算法的思想,我们
2021-05-05 22:20:27 288
原创 亲测有效-解决github图片不显示的问题
解决github图片不显示的问题修改hosts在计算机中搜hosts并打开C:\Windows\System32\drivers\etc\hosts在文件末尾添加:#GitHub Start192.30.253.112 Build software better, together192.30.253.119 gist.github.com151.101.184.133 assets-cdn.github.com151.101.184.133 raw.gith
2021-01-11 16:02:30 218
原创 算法篇——01动态规划
写在前面最近一段时间给自己定个目标:每周学习总结一个算法,以此记录自己的学习学习目标:一周入门动态规划学习内容:1、 掌握动态规划的基本含义和方法2、 应用动态规划算法解决相关的问题01.动态规划介绍动态规划前先举个例子(也是其他地方看到的):How should I explain dynamic programming to a 4-year-old?writes down “1+1+1+1+1+1+1+1 =” on a sheet of paper“What’s that
2021-01-09 20:58:28 314
原创 新闻推荐01
赛题理解此次比赛是新闻推荐场景下的用户行为预测挑战赛, 该赛题是以新闻APP中的新闻推荐为背景, 目的是要求我们根据用户历史浏览点击新闻文章的数据信息预测用户未来的点击行为, 即用户的最后一次点击的新闻文章。数据来自某新闻APP平台的用户交互数据,包括30万用户,近300万次点击,共36万多篇不同的新闻文章,同时每篇新闻文章有对应的embedding向量表示。为了保证比赛的公平性,从中抽取20万用户的点击日志数据作为训练集,5万用户的点击日志数据作为测试集A,5万用户的点击日志数据作为测试集B。评价方
2020-11-23 11:08:50 502 1
转载 Anaconda平台下安装tensorflow
Anaconda平台下安装tensorflow平台:windows版本:tensorflow2.0.0-alpha0(cpu版本)安装方式:pip一、安装环境Tensorflow2.0.0的CPU版本环境需求简单,安装比较简洁。TensorFlow是基于VC++2015开发的,所以需要下载安装VisualC++ Redistributable for Visual Studio 2015 来获取MSVCP140.DLL的支持。二、安装过程anaconda安装在anaconda安装不需要重新
2020-06-29 19:40:52 391
原创 pip安装第三方库时报错
**pip安装第三方库时报错Retrying (Retry(total=1, connect=None, read=None, redirect=None, status=None))…** pip安装第三方库时报错Retrying (Retry(total=1, connect=None, read=None, redirect=None, status=None))...,详细报错见下图:报错原因:国外镜像源连接问题导致解决:改为国内镜像源下载常用国内源:清华:https:/
2020-06-29 10:25:15 3007
原创 一个十分好用的文本编辑器——Typora
本文章向大家介绍Typora快捷键,主要包括Typora快捷键使用实例、应用技巧、基本知识点总结和需要注意事项,具有一定的参考价值,需要的朋友可以参考一下。 一:菜单栏文件:alt+F编辑:alt+E段落:alt+P格式:alt+O视图:alt+V主题:alt+T帮助:alt+H二:文件新建:Ctrl+N新建窗口:Ctrl+Shift+N打开:Ctrl+O快速打开:Ctrl+P保存:Ctrl+S另存为:Ctrl+
2020-05-19 15:24:42 1246
原创 如何在GitHub上传并更新项目
如何在GitHub上传自己的项目 首先你得注册一个自己的GitHub账号,注册网址:https://github.com/join有了自己的账号以后,就可以进行登录,开始创建一个新的项目创建一个新的项目,填写项目名称,描述创建完成之后,跳转到下面的页面,下面红框中的网址要记住,在后面上传代码的时候需要使用接下来,我们需要先下载Git,这里最好下载最新版本的Git,这里附上我下载的Git2.6.2的网址:https://
2020-05-19 10:37:04 3362
转载 关于训练集、验证集、测试集以及交验验证的理解
在人工智能机器学习中,很容易将“验证集”与“测试集”,“交叉验证”混淆。一、三者的区别训练集(train set) —— 用于模型拟合的数据样本。 验证集(development set)—— 是模型训练过程中单独留出的样本集,它可以用于调整模型的超参数和用于对模型的能力进行初步评估。 在神经网络中, 我们用验证数据集去寻找最优的网络深度(number of hidden lay
2020-05-15 15:18:19 761
原创 计算机视觉基础-图像处理(上)- Task06 边缘检测
计算机视觉基础-图像处理(上)- Task06 边缘检测1.介绍边缘:图像强度函数快速变化的地方边缘检测:我们需要检测图像中的不连续性,可以使用导数来检测不连续性。1.1 Sobel 算子1.2 Canny算子Canny边缘检测是从不同视觉对象中提取有用的结构信息并大大减少要处理的数据量的一种技术,目前已广泛应用于各种计算机视觉系统。Canny发现,在不同视觉系统上对边缘检测的要求较为...
2020-05-01 22:29:22 588
原创 计算机视觉基础-图像处理(上)-Task05 图像分割/二值化
计算机视觉基础-图像处理(上)-Task05 图像分割/二值化1.介绍该部分的学习内容是对经典的阈值分割算法进行回顾,图像阈值化分割是一种传统的最常用的图像分割方法,因其实现简单、计算量小、性能较稳定而成为图像分割中最基本和应用最广泛的分割技术。它特别适用于目标和背景占据不同灰度级范围的图像。它不仅可以极大的压缩数据量,而且也大大简化了分析和处理步骤,因此在很多情况下,是进行图像分析、特征提取...
2020-04-29 19:46:32 535
原创 计算机视觉基础-图像处理(上)-Task04 图像滤波
计算机视觉基础-图像处理(上)-Task04 图像滤波1.简介图像的实质是一种二维信号,滤波是信号处理中的一个重要概念。在图像处理中,滤波是一种非常常见的技术,它们的原理非常简单,但是其思想却十分值得借鉴,滤波是很多图像算法的前置步骤或基础2.内容1、均值滤波/方框滤波、高斯滤波的原理2、OpenCV代码实践3.理论介绍3.1 均值滤波、方框滤波滤波分类线性滤波: 对邻域中的...
2020-04-27 19:55:52 262
原创 计算机视觉基础-图像处理(上)-Task03 彩色空间互转
计算机视觉基础-图像处理(上)-Task03 彩色空间互转3.1 简介图像彩色空间互转在图像处理中应用非常广泛,而且很多算法只对灰度图有效;另外,相比RGB,其他颜色空间(比如HSV、HSI)更具可分离性和可操作性,所以很多图像算法需要将图像从RGB转为其他颜色空间,所以图像彩色互转是十分重要和关键的。3.2内容介绍1.相关颜色空间的原理介绍2.颜色空间互转理论的介绍3.OpenCV代...
2020-04-25 16:02:27 322
原创 计算机视觉基础-图像处理(上)-Task02 几何变换
计算机视觉基础-图像处理(上)-Task02 几何变换1.简介该部分将对基本的几何变换进行学习,几何变换的原理大多都是相似,只是变换矩阵不同,因此,我们以最常用的平移和旋转为例进行学习。在深度学习领域,我们常用平移、旋转、镜像等操作进行数据增广;在传统CV领域,由于某些拍摄角度的问题,我们需要对图像进行矫正处理,而几何变换正是这个处理过程的基础,因此了解和学习几何变换也是有必要的。2.内容介...
2020-04-23 20:44:05 283
原创 计算机视觉基础-图像处理(上)-Task01 OpenCV框架与图像插值算法
计算机视觉基础-图像处理(上)-Task01 OpenCV框架与图像插值算法最近邻插值是指将目标图像中的点,对应到源图像中后,找到最相邻的整数点,作为插值后的输出双线性插值双线性插值就是线性插值在二维时的推广,在两个方向上做三次线性插值import cv2 #导入opencv库img = cv2.imread('D:\\software\\jupyter\\CV-opencv\\i...
2020-04-20 17:55:16 330
原创 零基础入门数据挖掘学习路径-5模型结果融合
5.1 模型融合目标 对于多种调参完成的模型进行模型融合。5.2 内容介绍 模型融合是比赛后期一个重要的环节,大体来说有如下的类型方式。简单加权融合: 回归(分类概率):算术平均融合(Arithmetic mean),几何平均融合(Geometric mean); 分类:投票(Voting) 综合:排序融合(Rank averaging),log融合stacking/blending: 构...
2020-04-06 20:40:46 223
原创 零基础入门数据挖掘学习路径-4建模与调参
4.1 学习目标了解常用的机器学习模型,并掌握机器学习模型的建模与调参流程 完成相应学习打卡任务4.2 内容介绍线性回归模型: 线性回归对于特征的要求; 处理长尾分布; 理解线性回归模型; 2. 模型性能验证: 评价函数与目标函数; 交叉验证方法; 留一验证方法; 针对时间序列问题的验证; 绘制学习率曲线; 绘制验证曲线; 3. 嵌入式特征选择: Lasso回归; Ridge回归; 决策树...
2020-04-06 20:34:57 172
原创 如何删除【附加依赖项】中“继承的值”?
如何删除【附加依赖项】中“继承的值”?首先在属性管理器中,在这里配置会应用到所有的工程,包括以后新建的。如果在菜单里的工程的属性配置只会应用到当前工程。1、找到修改工程属性对话框:2.修改每一个Microsoft.Cpp.x64.user里面的继承值并保存,这里进去可以直接修改。...
2020-03-31 13:38:23 1781
原创 零基础入门数据挖掘学习路径-3数据的特征工程
零基础入门数据挖掘学习路径-3数据的特征工程特征工程目标1.对于特征进行进一步分析,并对于数据进行处理2.完成对于特征工程的分析,并对于数据进行一些图表或者文字总结3.2 内容介绍常见的特征工程包括:异常处理:通过箱线图(或 3-Sigma)分析删除异常值;BOX-COX 转换(处理有偏分布);长尾截断;特征归一化/标准化:标准化(转换为标准正态分布);归一化(抓换到 [...
2020-03-27 22:22:17 133
原创 零基础入门数据挖掘学习路径-2数据的探索性分析(EDA)
2.EDA-数据探索性分析EDA目标1.EDA的价值主要在于熟悉数据集,了解数据集,对数据集进行验证来确定所获得数据集可以用于接下来的机器学习或者深度学习使用。2.当了解了数据集之后我们下一步就是要去了解变量间的相互关系以及变量与预测值之间的存在关系。3.引导数据科学从业者进行数据处理以及特征工程的步骤,使数据集的结构和特征集让接下来的预测问题更加可靠。4.完成对于数据的探索性分析,并对...
2020-03-22 20:46:37 402
原创 超级简单的Python爬虫教程
这是一篇详细介绍 Python 爬虫入门的教程,从实战出发,适合初学者。读者只需在阅读过程紧跟文章思路,理清相应的实现代码,30 分钟即可学会编写简单的 Python 爬虫。这篇 Python 爬虫教程主要讲解以下 5 部分内容:了解网页;使用 requests 库抓取网站数据;使用 Beautiful Soup 解析网页;清洗和组织数据;爬虫攻防战;了解网页以中...
2019-12-07 17:03:12 1204 1
转载 HEVC英文缩写及部分概念整理
HEVC英文缩写及部分概念整理B:Bi-predictive(双向预测,即B帧或B条带,B条带中的CU可以采用帧内或帧间预测编码,每个预测块采用双向预测方式进行预测,B条带编码时同时使用参考图像列表0和参考图像列表1)AMVP 即先进运动矢量预测AMP 不对称分割WPP 波前编码SEI 图像增强提高信息NAL单元的前两个字节是头部(第一个字节总是0,接着是NAL类型,然后是lay...
2019-11-07 09:02:38 692
转载 LCU 模式选择过程分析(CTU的深度选择及CU的分割)
1.率失真代价计算模型HEVC 的最大编码单元为 LCU,即 64×64 的 CU,对一个 LCU 选择最佳 CU编码深度,需要遍历所有 64×64 到 8×8 的分割,一共 85 个 CU,通过计算率失真代价选择此 LCU 的最佳分割方式。对于每一个 CU,遍历帧内和帧间所有可选的预测模式,根据率失真代价选择最佳 PU 预测模式。对于每一种 PU 预测模式,TU的分割方式由当前 CU 的大...
2019-10-31 20:08:26 1402
转载 HEVC——HM的运行
1,HM下载 (1) HM不能直接网页下载,因为它是采用svn来管理代码的,因此需要利用svn下载,这里采用TortoiseSVN...
2019-10-25 14:39:05 821
转载 视频压缩编码参考软件代码入门
视频压缩编码参考软件代码入门代码学习0:参考软件的使用视频压缩编码标准参考软件获取参考软件的使用参考软件使用方法VTM工程cfg配置文件工程命令设置编码器解码器工程运行编码器解码器结果输出编码端解码端之前对视频压缩编码的学习主要停留在原理文本的学习上,18年9月份新学期才开始尝试深入一点了解代码。第一次面临这么大工程量的代码框架,虽然只是想对其进行一个小小的优化,但是在不了解其他部分框架的时候...
2019-10-25 11:38:29 1396
转载 h.264 Mode Decision
h.264 Mode Decision Mode Decision(模式选择)决定一个宏块以何种类型进行分割。宏块的分割类型有以下几种:12345678910111213141516171819202122232425//P_Skip and B_Skip means that nothing need to be e...
2019-10-23 18:45:32 391
转载 正则化及正则化项的理解
正则化及正则化项的理解 首先了解一下正则性(regularity),正则性衡量了函数光滑的程度,正则性越高,函数越光滑。(光滑衡量了函数的可导性,如果一个函数是光滑函数,则该函数无穷可导,即任意n阶可导)。 正则化是为了解决过拟合问题。在Andrew Ng的机器学习视频中有提到(详见http...
2019-10-21 14:13:28 2601
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人