HDU 3846

RMQ算法
题目大意:为了证明两个集合A和B是等价的,我们可以先证明A是B的子集,然后证明B是A的子集,所以最后我们得到这两个集合是等价的。
你要证明N个集合是等价的,使用上面的方法:在每一步中,你可以证明一个集合X是另一个集合Y的子集,也有一些集合已经被证明是其他集合的子集。
现在您想知道证明问题所需的最小步骤。

#include<cstdio>
#include<algorithm>
using namespace std;
const int N=200010;
int a[N];
int n,k;
int F[N][20],lb[N];

void Initlog(){
	lb[0]=-1;
    for(int i=1;i<=N;i++)
        lb[i]=lb[i-1]+(i&(i-1)?0:1);
}

void ST(int n){
    for(int i=1;i<=n;i++)
		F[i][0]=a[i];
    for(int j=1;j<=lb[n];j++)
        for(int i=1;i<=n-(1<<j)+1;i++)
            F[i][j]=max(F[i][j-1],F[i+(1<<(j-1))][j-1]);
}

int RMQ(int l,int r){
    int k=lb[r-l+1];
    return max(F[l][k],F[r-(1<<k)+1][k]);
}

bool ok(int m){
    int t=n/m,s=0;
    for(int i=0;i<m;i++)
		s+=RMQ(t*i+1,t*i+t);
    return s>k;
}

void solve(int n){
	ST(n);
    int l=1,r=n,ans;
    while(l<=r){//二分找m
        int m=(l+r)>>1;
        if(ok(m)) r=m-1,ans=m;
        else l=m+1;
    }
    printf("%d\n",ans);        
//    while(l<r){//二分找划分数  
//        int m=(l+r)/2;
//        if(ok(m)) r=m;
//        else l=m+1;
//    }
//	printf("%d\n",l);
}

int main(){
    Initlog();
	while(scanf("%d%d",&n,&k),n>=0||k>=0){
        int sum=0;
        for(int i=1;i<=n;i++){
            scanf("%d",&a[i]);
            sum+=a[i];
        }
        if(sum<=k)
			printf("-1\n");
		else
			solve(n);  
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

打豆豆1234

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值