- 博客(442)
- 资源 (1)
- 收藏
- 关注
原创 通用人工智能离我们还有多远?从认知模型到大模型的深度解析
AGI指的是能够像人类一样理解、学习、推理、迁移并适应多种复杂任务的人工智能系统。与我们今天使用的“窄人工智能”(Narrow AI)不同,AGI具有:多任务通用性(不是只会围棋或翻译)可持续学习能力(一次学习,终身受用)推理与抽象能力(不仅给出答案,还能说明“为什么”)自我感知与反思能力(例如元学习、策略优化)目前的 GPT-4、Claude 3、Gemini、Mistral 等大模型虽已表现出令人惊艳的能力,但距离真正的 AGI,仍有若干关键鸿沟。
2025-06-12 13:45:54
598
原创 边缘智能的崛起:人工智能在“云—边—端”协同中的新突破
边缘智能(Edge Intelligence)是指将人工智能算法集成至边缘计算平台或终端设备中,使其具备本地智能感知、分析、决策与执行的能力。边缘计算:靠近数据源的计算模式;边缘智能:在边缘设备上运行AI算法;典型设备:智能摄像头、边缘服务器、工业控制器、可穿戴设备等。边缘智能并非要取代云计算,而是强调与云平台的互补与协同。边缘智能不仅是技术演进的产物,更是AI走向“泛在化”时代的战略支点。它打破了AI只能集中部署的边界,使人工智能能力真正渗透到每一处真实物理世界中。
2025-06-12 13:44:22
204
原创 人工智能新范式:从大模型到智能体的演化逻辑
属性含义感知能力能接收外部环境信息(如文本、图像、传感器数据)决策能力能根据状态制定目标或选择行动方案行动能力能调用工具或执行操作影响环境记忆与学习能持续积累经验并改进行为策略这意味着 Agent 是一种持续运行、交互式、目标导向的智能个体,而不是一次性生成文本的工具。我们正处于一个前所未有的技术临界点。人工智能从“任务助手”走向“智能个体”,不再是机械的代码堆栈,而是带有意图与策略的数字生命。这要求我们用新的视角思考:如何设计与AI共存的协同社会?如何赋予AI以理性、道德和边界?
2025-06-11 14:52:16
590
原创 数智融合时代的气候数据革命:从观测到决策的价值跃迁(文末附23种数据下载链接)
气候数据曾长期被视作“基础数据”,其主要服务于天气预报、灾害监测和农事指导等传统领域。然而,随着气候变化的加剧与数字智能技术的深度融合,气候数据的价值正被重新定义和释放。今天,气候数据不仅仅属于气象部门,而正逐步走向更广阔的产业边界:能源公司利用高精度风场数据优化风电调度;航空与物流企业依靠精细化预报调整飞行与运输路径;金融保险机构将极端气候事件预测用于风险定价;城市管理者通过智能预警系统提升极端天气响应效率。✅ 结论:气候数据已从“预报支撑”跃升为“决策引擎”,其价值链正在重构。
2025-06-11 10:33:29
1279
原创 人工智能与大数据融合发展:新一代智能系统的演进路径
AI 和大数据的融合,不再是简单的技术整合,而是重新定义了产业运行的基础逻辑。未来十年,数字世界的竞争,不再是“谁拥有更多数据”或“谁掌握更强算法”,而是:谁能将“数据→算法→价值”形成稳定、可控、自动演进的闭环系统;谁能构建“智能涌现”的组织架构、人才机制与平台工具。智能时代,不是拥有AI的企业最强,而是能够让AI自然融入业务流程、持续学习成长的企业最强。
2025-06-10 11:29:54
931
原创 人工智能重塑产业的力量:技术演进、落地路径与典型案例剖析
人工智能并非万能解决方案,它无法替代行业经验与管理智慧。但它提供了改变规则、重构价值链的“第二增长曲线”。AI 产业化的真正门槛,不在于技术本身,而在于:能否真正理解业务流程的痛点;能否用 AI 技术构建新范式而非旧流程的修补;能否打造人才、组织、流程、平台协同发展的智能系统。未来的企业,不是“使用 AI 的企业”,而是“以 AI 为中心设计出来的企业”。
2025-06-10 11:28:51
963
原创 人工智能新纪元:技术跃迁、行业变革与未来挑战
人工智能是一种工具,它可以辅助医生治病、协助学生学习、帮助企业提升效率。但它也是一面镜子,映射出我们对知识、权力、道德的理解与投射。我们既需要掌握 AI 技术的能力,也必须承担起引导 AI 向善的责任。AI 的未来不只是技术决定的,更是人类共同愿景塑造的。在这个智能时代,每一个人都不应只是“使用者”,而应成为 AI 时代的塑造者守护者与见证者。
2025-06-09 16:30:18
813
原创 云原生时代的系统设计:架构转型的战略支点
云原生计算基金会(CNCF)对“云原生”的定义为:可扩展性(Scalable)动态环境(Dynamic Environments)现代基础设施(Modern Infrastructure)自动化与声明式(Declarative Automation)云原生不是简单的技术选型,而是一种系统设计哲学,它强调的是:面向变化而生;拥抱复杂而治;自动化驱动效率;可观测支撑信任;安全性内建架构。对于任何希望在数字时代长期生存与发展的企业而言,云原生能力就是新的核心竞争力。
2025-06-09 16:27:56
714
原创 大数据架构设计与平台选型实践指南:从零搭建数据驱动能力体系
大数据平台建设是一项系统工程,既要技术选型精准,又要架构设计前瞻,更需与业务深度融合。在竞争日趋激烈的今天,拥有一个稳定、智能、开放的大数据架构体系,意味着在数字化赛道中拥有先发优势。唯有构建具备业务闭环能力的数据平台,企业才能真正释放数据价值、实现从“知”到“行”的跃迁。
2025-06-08 19:40:10
896
原创 大数据赋能行业智能化升级:从数据价值到战略落地的全景透视
大数据不是工具,而是战略。它连接企业内部的数据资产与外部的环境信号,使得组织能够真正具备“感知-思考-行动”的智能闭环。智能化不是终点,而是以数据为核心资产、以洞察为能力底座、以决策为业务武器的“数字化胜任力”的体现。未来的企业将不再简单追求数据量的积累,而是在“数据价值实现能力”上展开真正的竞争。
2025-06-08 19:37:49
928
原创 构建云原生安全治理体系:挑战、策略与实践路径
云原生安全不是在传统安全能力的基础上“贴补丁”,而是以平台工程为基础,融合开发流程、基础设施与运维体系,进行整体性设计和执行。未来,随着多云、多集群、边缘计算的广泛落地,云原生安全治理的难度将持续上升。但只要我们构建起“平台化、安全即服务”的能力体系,将安全能力标准化、模块化、可复用化,就能让安全不再成为业务创新的阻力,而成为业务韧性的保障。
2025-06-05 16:45:10
1160
原创 云原生 DevOps 实践路线:构建敏捷、高效、可观测的交付体系
云原生 DevOps 是一次范式的重构,它让软件交付流程更加自动化、可观测、可治理。但 DevOps 本质上仍是企业工程效率优化的手段,最终目的是加快业务响应速度、提升系统稳定性、降低交付成本。未来,随着 AI、边缘计算、Wasm 等新技术融入云原生生态,DevOps 的边界将持续拓展。而构建一个“产品级平台”化 DevOps 能力体系,将是每一个技术团队不得不面临的挑战。
2025-06-05 16:43:41
1414
原创 云原生与DevOps融合实践:加速企业数字化转型的加速器
云原生(Cloud Native)是指利用云计算提供的弹性和分布式能力来构建应用的一种架构模式,主要包括:容器化(Containerization)微服务(Microservices)动态编排(如 Kubernetes)服务网格(Service Mesh)可观测性(Observability)系统松耦合、可弹性伸缩、快速部署、自动恢复。某大型金融企业,原有系统基于传统的虚拟机和人工发布流程,存在:上线周期长(每次发布需1周以上)运维负担重(版本不一致、依赖复杂)
2025-05-29 08:21:06
1542
原创 云原生架构中的弹性与容错设计:从理念到企业落地实践
云原生(Cloud Native)作为现代企业 IT 架构的核心理念,其背后的动因并不是“零故障”,而是“在故障不可避免的前提下依然保持业务连续性在容器、微服务、Kubernetes 等云原生技术驱动下,系统变得更灵活、更可扩展,但也更加复杂和脆弱。一个服务挂掉可能不是灾难,但如果它的“熔断、降级、重试、容灾”机制没有设计好,整个业务链条都可能被拖垮。**弹性(Resilience)与容错性(Fault Tolerance)**因此成为云原生架构不可或缺的核心设计原则。
2025-05-29 08:20:12
669
原创 企业级云原生平台的演进路径与治理框架
技术红利来自架构标准化,效率红利来自组织协同没有治理的“平台化”会迅速演变为“新一轮的混乱”平台成功的关键不是K8s上线,而是“服务即产品”的思维转变真正成功的企业平台化建设,一定不是“运维人员的自动化工具”,而是“企业能力的战略承载体”。云原生是现代企业的“数字底座”,其成功与否,将直接决定企业未来三到五年的竞争力。从技术堆叠,到能力整合;从平台部署,到组织治理。云原生之路,不止技术,更关组织、文化与战略认知。
2025-05-26 14:01:25
691
原创 云原生技术在企业数字化转型中的战略价值与实践路径
企业导入云原生,不应止步于部署K8s集群,更应通过平台化、治理化、智能化演进,构建“面向未来”的数字基础设施。技术的目标不是炫技,而是以更小的代价、更快的速度、更稳的支撑,为企业创造持续、复利型价值。只有“用好云、管好云、营好云”,才能真正完成从数字化建设到数字化运营的战略飞跃。
2025-05-26 13:59:17
965
原创 云原生架构演进中的配置管理体系构建与实践
随着云原生架构的普及,微服务、容器化和 DevOps 成为现代应用架构的标准形态。配置数据(Configuration)。配置项贯穿整个应用生命周期:启动参数、数据库连接、第三方服务地址灰度发布开关、缓存参数、服务降级阈值业务逻辑规则、特性开关、国际化资源传统配置管理依赖静态文件(如.conf)或环境变量,不具备动态性、可观测性、安全性和审计能力。在云原生环境中,这种做法已经难以满足大规模分布式系统的灵活性与稳定性需求。
2025-05-09 12:35:29
831
原创 云原生架构下的服务治理体系全景解析
微服务架构带来灵活性与扩展性,但也引入了大量服务间协作复杂性。治理体系的缺失,会让系统陷入:服务调用混乱故障传播无感知灰度发布无法验证安全策略形同虚设因此,构建一套适配云原生环境的服务治理体系,不仅是技术升级的配套手段,更是系统稳定性与业务连续性的保障。
2025-05-09 12:33:11
1001
原创 云原生应用全生命周期管理实战:从开发、部署到运维的一体化方案
随着企业IT架构从单体转向微服务,再到全面拥抱容器化与Kubernetes,应用的构建、部署、配置、监控、弹性与治理也正经历一场全方位的变革。传统的开发运维“割裂”模式在现代软件体系中难以为继,**全生命周期管理(Application Lifecycle Management, ALM)**在“云原生”语境下被赋予了新的定义。本篇文章将围绕如下几个方面展开:构建云原生应用标准形态实现一体化 CI/CD 流水线构建配置中心与服务注册机制增强可观测性、弹性与自动化治理。
2025-05-08 11:31:01
847
原创 云原生架构实战:打造高可用、可扩展的现代应用体系
CNCF 给出的定义:云原生技术有助于各组织在私有云、公有云和混合云中构建和运行可扩展的应用。它采用容器、服务网格、微服务、不可变基础设施和声明式 API 等技术。简而言之,云原生强调“云上优先”设计,使应用天然适配弹性环境,具有高度自动化、可观测性和弹性。弹性扩展:K8s 自动扩容、快速部署敏捷交付可观测性强:统一监控、追踪、日志平台服务治理完善:服务网格赋能网络层逻辑资源利用优化:容器资源隔离,按需调度。
2025-05-08 11:28:12
1022
原创 数据治理中的数据血缘分析:原理、技术与实战
数据血缘是指数据在整个生命周期中“从哪里来、经过了什么处理、到达了哪里”的追踪信息。数据从何而来?(来源)数据是如何加工变换的?(过程)数据最终流向何处?(去向)这种信息构成了数据资产的“发展轨迹”和“加工历史”。数据血缘是企业数据治理中不可或缺的一环,它将分散、隐性的加工过程可视化、结构化、可追踪。通过数据血缘的建设,企业可以实现:✅ 数据问题快速定位✅ 数据资产价值度量✅ 数据合规高效审计✅ 元数据全链条融合✅ 驱动数据质量闭环治理“不懂数据血缘的治理平台,是盲人摸象;
2025-05-07 08:18:56
986
原创 构建可信任的核心数据资产:主数据管理在大数据治理中的落地实践
主数据(Master Data)是指在企业多个系统中共享的、核心的、稳定的数据实体主数据域实体示例字段客户域客户、联系人姓名、证件号、联系方式产品域商品、SKU品名、编码、计量单位组织域部门、组织机构部门代码、上级单位供应商域供应商、合作商企业名称、统一社会信用代码这些数据不是交易数据(如订单、发票),也不是日志,而是“企业运行的基准数据”。主数据不是技术问题,而是组织问题、流程问题和标准问题的综合体现。有效的主数据治理体系,必须具备:完善的标准与编码策略。
2025-05-07 08:15:52
682
原创 大数据技术:从趋势到变革的全景探索
大数据技术已经不再是未来的趋势,而是正在深刻影响和改变我们的现实世界。随着技术的不断演进,我们能够从大数据中获得更多的洞察和价值,推动各个行业的创新与变革。然而,在享受大数据带来的红利的同时,我们也需要解决其中的挑战和问题,确保数据的安全与公平。未来的大数据,将不仅仅是一个工具,更将成为推动社会进步和经济发展的核心驱动力。
2025-05-03 20:42:03
1038
原创 大数据:数字时代的驱动力
大数据是指在传统数据处理技术下无法有效处理和分析的数据集。Volume(数据量):大数据的最显著特征是其庞大的数据规模,通常以PB(PetaBytes)或EB(ExaBytes)为单位。全球每时每刻都在产生着海量数据,这些数据来自于互联网、社交媒体、物联网设备、传感器等各类渠道。Velocity(数据速度):数据的生成和处理速度极为迅猛。在当今快速变化的环境中,数据的实时性显得尤为重要。例如,金融市场、社交平台的实时数据流,要求处理系统能快速响应并做出决策。Variety(数据种类)
2025-05-03 20:40:52
904
原创 云原生后端架构的实践与挑战:探索现代后端开发的未来
云原生架构是一种基于云环境设计的应用架构模式,它的目标是利用云平台的灵活性和弹性来构建高度可扩展、易于管理的分布式系统。在云原生架构下,后端服务通常采用微服务模式进行构建,每个微服务都能够独立部署、独立扩展和独立更新。微服务架构:将一个单体应用拆解成多个独立的服务,每个服务专注于单一的业务功能,减少了服务之间的耦合,提高了系统的灵活性和可维护性。容器化:通过容器(如Docker)对应用进行封装,确保应用在不同环境下的运行一致性。容器化提高了系统的可移植性、可扩展性以及资源利用率。自动化运维。
2025-05-02 20:50:42
1689
原创 云原生后端:构建高效、可扩展的现代后端架构
云原生是一种构建和运行应用的方法,它能够充分利用云计算的优势。云原生架构不仅仅是在云环境中部署应用,而是从架构设计上就考虑到云平台的弹性、可扩展性和自动化等特点。云原生的核心理念包括微服务架构、容器化、持续交付、服务网格等技术。它要求开发团队能够快速迭代和自动化管理应用,从而提升开发效率和系统的可靠性。云原生后端架构是一种现代化的系统架构模式,能够帮助企业构建更加高效、可靠和可扩展的后端系统。通过容器化、微服务、自动化运维等技术的结合,云原生后端能够充分利用云计算的优势,为企业提供强大的技术支持。
2025-05-02 20:49:32
1231
原创 金融行业大数据治理最佳实践:合规驱动下的数据资产智能运营(含代码示例)
金融行业对数据治理的要求不仅是“做得好”,更是“必须做”。从业务合规、风险控制到价值释放,数据治理是数字银行的生命线。本文总结了:金融行业治理的独特挑战可行的架构与组件选型场景化代码实现与案例合规对接要点与未来趋势数据即资产,治理即护城河。对金融机构来说,治理做得好,才谈得上数据“可用、可信、可控、可赢”。
2025-04-30 08:52:31
1127
原创 大数据治理自动化与智能化实践指南:架构、工具与实战方案(含代码)
大数据治理正处在从规则驱动到智能驱动的跃迁之中。未来的治理平台不再只是“规定动作的执行者”,而是一个具备“洞察力”“决策力”“执行力”的智能系统。企业若想在数据治理中真正走在前列,就必须:用自动化手段“减负提效”用智能化工具“深度洞察”用平台化架构“统一运营”治理不仅是合规,更是生产力。未来已来,唯有先行者能享其果。
2025-04-30 08:49:45
1336
原创 从零搭建云原生后端系统 —— 一次真实项目实践分享
成功经验早期设计好领域划分,减少后续维护负担;服务注册、配置、通信、监控一步到位,避免补救式治理;小步快跑,每次改动都经过CI/CD流程验证,降低风险;重视可观测性,做到“异常能预警,问题能回溯”。教训警示微服务不是越多越好,过度拆分导致管理复杂度上升;依赖过深的微服务,需要做合理的熔断与降级策略;监控与告警要覆盖全链路,不能只监控个别关键点;持续关注集群资源使用,防止因资源紧张导致系统崩溃。云原生不是简单地用新工具,而是思维方式的转变。
2025-04-28 00:15:00
963
原创 基于云原生架构的后端微服务治理实战指南
从Day 1就设计治理体系,而不是上线后补救;统一注册发现与配置中心,保持服务动态可控;API网关前置,屏蔽内部细节,统一认证限流;服务通信必须具备熔断限流重试机制,保护系统稳定;监控与追踪全量覆盖,做到可观测、可追踪、可审计;容器化与弹性伸缩机制必不可少,应对瞬时流量波动;不断演练故障恢复,提升团队故障处理能力。在云原生时代,微服务架构是大势所趋。但如果没有一套完善的治理体系支撑,微服务不仅不能提高效率,反而会变成灾难制造机。治理不是一次性的项目,而是持续演进、不断优化的过程。
2025-04-28 00:00:00
1108
原创 构建事件驱动的云原生后端系统 —— 从设计到实践
"data": {这种标准化的事件定义,确保了不同模块之间的兼容性和演进能力。系统解耦性更好:服务之间只关心事件,不关心彼此存在;弹性伸缩更自然:每个消费者根据流量独立扩展;架构演进更灵活:可以无痛添加新业务,随时响应变化;稳定性与容错性大大增强:异步处理+队列持久化,避免单点风险。未来,随着云计算、IoT、实时大数据分析的发展,事件驱动+云原生将成为后端系统的主流范式。而对于每一个程序员来说,掌握这种理念与技术栈,已经不是“加分项”,而是必须项。
2025-04-27 17:02:13
1285
原创 从零构建云原生秒杀系统——后端架构与实战
在传统架构下,要支撑一个大规模秒杀活动,往往需要提前一个月加班调优,并且成功率仍然不高。而采用云原生技术后,我们收获了:✨快速弹性:按需弹性扩展,从容应对突发流量;🔄自动恢复:节点故障时,自动调度重建,系统自愈;🔒安全合规:以零信任架构保障数据与通信安全;📈敏捷迭代:支持蓝绿发布、A/B测试,加快业务创新;📊全面监控:实时掌握系统健康状态,及时预警。通过容器化、微服务化和自动化运维,我们构建了一个真正意义上的高可用、高并发、高扩展性的现代秒杀后端系统。
2025-04-27 16:58:44
1042
原创 传统中台的重生——云原生如何重塑政务系统后端架构
该系统原为一个基于 SpringBoot + Oracle 的单体应用,部署在物理服务器中,由于接口激增、数据吞吐暴涨,系统频繁崩溃。决定将其转型为云原生架构。政务系统的“上云”不只是部署方式的变化,更是治理、流程、服务理念的全面转型。而云原生后端,正是这场数字革命的“底座”。通过容器化、微服务、自动化、可观测、安全原生等手段,我们不仅能让旧系统焕发生机,更能构建一个“敏捷、高效、安全、稳定”的新一代政务平台,为亿万用户提供真正可靠的政务服务。
2025-04-25 16:47:46
1269
原创 微服务架构在云原生后端的深度融合与实践路径
在数字化时代,企业和开发者要构建的系统不仅要高可用、高性能,还要具备自恢复、弹性与易维护能力。微服务与云原生的深度融合,是实现这一目标的技术路径之一。从理念到工具链,从开发到运维,我们都在走向一个更加“平台化、智能化、标准化”的后端新时代。未来的后端工程师,不仅是代码实现者,更是架构规划者、系统运营者、业务洞察者。
2025-04-25 16:44:04
1158
原创 中小企业技术跃迁:云原生后端如何实现高效低成本系统建设
虽然云原生最初起源于互联网巨头,但其理念与工具在不断下沉,正在成为中小企业“数字化转型”的重要推手。通过合理规划与选型,即使是人员有限、资源受限的团队,也可以逐步构建起稳定、可扩展、自动化的现代后端系统架构。中小企业无需一次性迈入“完美架构”,而是可以从服务化开始,从容器部署起步,从监控治理着手,一步步走向真正“云原生”的未来。云原生不是终点,而是通向现代技术体系的高速路。无论你身处大厂还是创业公司,早一点启程,就早一步拥有“技术红利”。
2025-04-24 08:09:50
1013
原创 金融系统上云之路:云原生后端架构在金融行业的演化与实践
在金融行业迈向数字化、智能化、开放化的过程中,云原生后端架构不只是“技术升级”,更是一种支撑稳定运行、高效开发、智能扩展的“数字底座”。它让金融系统更灵活、更可靠、更敏捷,为新业务提供快速试错和安全扩展的土壤。未来,随着监管技术、合规云平台、国产化替代等趋势不断演进,云原生将在更多金融场景下落地生根。而每一个系统架构师,都将在这场革新中扮演关键角色。
2025-04-24 08:08:14
1239
原创 从虚拟到现实:AI驱动下的数字人崛起之路
数字人不只是技术的奇观,它更像是人类意识的投影、情感的延展。当AI赋予它语言、感知、情绪和行为能力,我们正在进入一个“虚拟分身”可协助工作、生活、创作的新时代。未来,每个人都可能拥有一个自己的数字人,它能代表你出现在视频会议中,替你回复信息,甚至与你对话疗愈、激励你成长。在这个通往智能未来的时代,我们要做的,不是抵触“虚拟人”,而是积极赋予它**“人之善意”与“技术之界限”**。人工智能为数字人注入灵魂,而我们,则赋予它方向。
2025-04-22 11:21:54
884
原创 AI的绿色使命:人工智能在可持续发展中的新角色
人工智能不只是高科技,它正逐渐成为人与地球沟通的桥梁。它帮助我们看见地球的变化,预测未来的风险,优化我们的行为和选择。在未来的绿色革命中,AI可能不是主角,但必定是最可靠的助手。面对气候危机,我们已经等不起了。正如联合国秘书长所说:“我们正在与时间赛跑,而AI,是我们手中少有的加速器。让AI不仅变得聪明,更要变得有责任、有温度、有绿色使命。这,将是我们科技与生态共赢的未来。
2025-04-22 11:19:43
659
原创 AI 大模型在教育革命中的角色重塑:从知识传递者到认知伙伴
我们无需惧怕 AI 大模型进入教育,而要拥抱其“认知增强器”的本质。它不是“万能老师”,也不是“完美评卷人”,它是人类智识的延伸,是教育者手中的第二把刷子。未来的学习,不再是一个人在课桌前苦读,而是人类与算法共同穿越知识的迷雾,一起抵达更高的理解力和创造力。
2025-04-21 16:25:25
1092
原创 一年光阴·代码有痕 —— 我的CSDN创作纪念日
写作不止是记录,更是成长的催化剂。在CSDN这一年的创作旅程中,我从一个“记录者”变成了一个“传播者”,用代码和文字,丈量了自己的技术步伐,也连接了更广阔的技术社区。愿我们都能在热爱的领域里,持续发光。下一个创作纪念日,我们一起,写下更精彩的故事。
2025-04-21 09:14:56
780
2024年天津市10类【地理+人文】shp文件-省+市+县区+乡镇街道+水系+大学+景点+道路+高程+土壤类型
2025-05-21
2024年河北省10类【地理+人文】shp文件-省+市+县区+乡镇街道+水系+大学+景点+道路+高程+土壤类型
2025-05-21
2024年广东省10类【地理+人文】shp文件-省+市+县区+乡镇街道+水系+大学+景点+道路+高程+土壤类型
2025-05-21
2024年上海市10类【地理+人文】shp文件-省+市+县区+乡镇街道+水系+大学+景点+道路+高程+土壤类型
2025-05-21
2024年福建省10类【地理+人文】shp文件-省+市+县区+乡镇街道+水系+大学+景点+道路+高程+土壤类型
2025-05-20
2024年北京市10类【地理+人文】shp文件-省+市+县区+乡镇街道+水系+大学+景点+道路+高程+土壤类型
2025-05-20
2024年山东省10类【地理+人文】shp文件-省+市+县区+乡镇街道+水系+大学+景点+道路+高程+土壤类型
2025-05-20
2024年河南省10类【地理+人文】shp文件-省+市+县区+乡镇街道+水系+大学+景点+道路+高程+土壤类型
2025-05-20
宁夏土壤类型空间分布-标准shape文件
2025-05-16
陕西土壤类型空间分布-标准shape文件
2025-05-16
上海土壤类型空间分布-标准shape文件
2025-05-16
青海土壤类型空间分布-标准shape文件
2025-05-16
四川土壤类型空间分布-标准shape文件
2025-05-16
山东土壤类型空间分布-标准shape文件
2025-05-16
天津土壤类型空间分布-标准shape文件
2025-05-16
新疆土壤类型空间分布-标准shape文件
2025-05-16
西藏土壤类型空间分布-标准shape文件
2025-05-16
浙江土壤类型空间分布-标准shape文件
2025-05-16
云南土壤类型空间分布-标准shape文件
2025-05-16
重庆土壤类型空间分布-标准shape文件
2025-05-16
汉江流域空间分布及地形特征-可编辑mxd文件+标准shape文件+标准成图TIF
2025-06-12
1979-2024年中国6类作物【水稻+小麦+玉米+棉花+油菜+大豆】作物害虫名录数据集-Excel版本
2025-06-12
2024最新全国工业用地数据-可编辑mxd文件+标准shape文件+标准成图TIF
2025-06-11
2005-2023年31省小麦产量数据-shp版本+Excel版本+可编辑mxd文件+标准成图TIF
2025-06-11
2000-2020年中国31省社会平等指数SEI数据-shp版本+Excel版本+可编辑mxd文件+标准成图TIF
2025-06-11
2005-2024年31省粮食产量数据-shp版本+Excel版本+可编辑mxd文件+标准成图TIF
2025-06-11
2024年全球海底通讯电缆分布数据-可编辑mxd文件+标准shape文件+标准成图TIF
2025-06-10
2005-2023年31省私人汽车拥有量数据-shp版本+Excel版本+可编辑mxd文件+标准成图TIF
2025-05-30
2005-2023年31省公园个数数据-shp版本+Excel版本+可编辑mxd文件+标准成图TIF
2025-05-29
2005-2023年31省城市绿地面积数据-shp版本+Excel版本+可编辑mxd文件+标准成图TIF
2025-05-29
2024年中国50个生态功能保护区空间分布-可编辑mxd文件+标准shape文件+标准成图TIF
2025-05-28
2005-2023年31省【粮食+蔬菜产量】数据-shp版本+Excel版本+可编辑mxd文件+标准成图TIF
2025-05-28
2011-2023年31省规模以上工业企业【专利+发明专利+有效发明专利】-shp版本+Excel版本+可编辑mxd文件+标准成图TIF
2025-05-27
2005-2023年31省人口数据(常住+城镇+农村人口)-Shp版本+Excel版本+可编辑mxd文件+标准成图TIF
2025-05-26
2005-2023年31省【地区生产总值+第一二三产业增加值】-Shp版本+Excel版本+可编辑mxd文件+标准成图TIF
2025-05-23
2024年江西省10类【地理+人文】shp文件-省+市+县区+乡镇街道+水系+大学+景点+道路+高程+土壤类型
2025-05-22
2024年湖北省10类【地理+人文】shp文件-省+市+县区+乡镇街道+水系+大学+景点+道路+高程+土壤类型
2025-05-22
2024年甘肃省10类【地理+人文】shp文件-省+市+县区+乡镇街道+水系+大学+景点+道路+高程+土壤类型
2025-05-22
2005-2024年31省居民(全体+城镇+农村)人均可支配收入-Shp版本+Excel版本+可编辑mxd文件+标准成图TIF
2025-05-22
2005-2023年全国31省造林总面积(千公顷)-Shp版本+Excel版本+-可编辑mxd文件+标准成图TIF
2025-05-22
深度学习模型的可解释性
2024-11-05
TA创建的收藏夹 TA关注的收藏夹
TA关注的人