最后的纱丽:人工智能时代的鉴赏力(翻译文章)

声明:这篇文章为翻译文章,如有翻译不准之处请见谅。原文请参照:The Last Saree: Connoisseurship in the Age of AI - DEV CommunityExploring how AI can contribute to the concept of connoisseurship by helping humans better appreciate ancient artifacts, with the example of artisan textiles as a catalyst to help humans move from appropriation to appreciation. Tagged with ai, art, machinelearning, database.icon-default.png?t=O83Ahttps://dev.to/jenlooper/the-last-saree-connoisseurship-in-the-age-of-ai-4c31

“纱丽的时代悄然终结”了吗?这篇文章和Shilpa上的原始问题的标题都隐藏着更深层次的焦虑。如果我们在拥抱新技术的过程中忘记了让生活变得丰富多彩、多样化和愉快的传统,那该怎么办?拒绝卢德分子的反技术暴力,我们能否设想一个技术可能被用于保护工匠物质文化而不是将其抹去的世界?在本文中,我们将通过研究手工纺织品这一特殊案例来探索技术与手工艺的交集,将其作为连接新旧、工匠和工程师、诗人和科学家的文字网络。

纺织品作为催化剂

纱丽式垂褶服饰在 1000 多年前的雕刻中就曾出现过。在阅读此类思想文章时,重要的是要明白,古老的传统永远无法通过现代技术“改进”。例如,动力织机能否生产出与手工织机上手工制作的纺织品相媲美的纺织品,这一点值得商榷。

身着早期纱丽的陶俑

身着类似纱丽服饰的陶俑,来自孟加拉(公元前 200-100 年)

纺织品是与地球上几乎每个人息息相关的文化的一部分,研究它们非常有趣,因为它们构成了重要的人际和跨文化联系网络。自工业革命以来,手工纺织品一直受到威胁,当时工业技术的一些早期进步被用于机械化加工原始可编织材料和制造布料。因此,纺织品处于技术进步与保护手工艺愿望之间紧张关系的纽带。它们可以有效地用作案例研究,以考虑人工智能的进步可能对物质文化产生的影响。

从文化挪用到文化欣赏

对纺织品的研究通常会引出对时尚的研究,以及人类如何通过服装来表明归属感。有时,一个群体对服装的不当或轻率使用表明了恶意,或者只是无知。例如,在足球比赛中佩戴美洲原住民战争头饰,就是将一件具有重要文化意义的服装穿在了不合适的场合。如果我们假设技术进步的应用可以用于将观众从不理解转变为理解(教育技术的前提),那么让我们观察一下我们如何使用这些工具来帮助观众了解印度辉煌的手工纺织品。

纺织品的故事

对抗无知的一种方法是观察历史。物质文化的特定元素从何而来,它是如何演变成现在的形式的?什么样的文化背景促成了这种演变?一种历经数百年演变的服装的一个很好的例子就是经典的蓝色牛仔裤……那是典型的美国服装(或者就是这样?)

牛仔裤作为文化信号

牛仔裤的故事开始于 17 世纪,当时蓝色裤子起源于印度,由水手穿着——这些裤子被称为 Dungarees,可能来自印度小镇 Dongri。它们可能是“Serge de Nîmes”的前身,这种面料的灵感来自印度棉花,也是“Denim”一词的起源。“jeans”一词源于热那亚制造的一种材料——“Bleu de Gênes”。请注意这些文物与港口城市的联系,那里的码头工人和水手需要优质、结实的工作裤,以及这种服装通过与航行水手联系在一起而迅速在世界各地流通。

牛仔裤的靛蓝斜纹布与美国南部种植园的强迫劳动以及南北棉花的流动有着密切的联系。可以说,这种面料对美国的历史产生了深远的影响。我们今天所知道的牛仔裤是由李维斯公司推崇的,该公司在 19 世纪 70 年代在裤子的接缝处添加了铆钉,并申请了专利,这样加州的矿工们就可以放心地穿着不会撕裂的工作服。到了 20 世纪 70 年代,牛仔裤已经成为反主流文化的象征,到了 20 世纪 80 年代,牛仔裤则成为高级时装的象征,并且它们一直持续演变至今。追溯不起眼的蓝色牛仔裤的历史,我们可以将一种纺织品的演变等同于将其带到世界各地的文化潮流。

利维斯特劳斯徽标

坚不可摧的 Levi-Strauss 蓝色牛仔裤!

讲故事的技术

技术在研究文物历史时起着怎样的作用?如今,世界各地的博物馆都在努力解决这个问题。朝这个方向迈出的第一步是将藏品放到网上,而要做到这一点,就需要将其数字化。

博物馆和图书馆(以及其他商业实体)使用DAM (数字资产管理)解决方案来数字化模拟收藏。所有可以存储在在线系统中的照片、3D 渲染和元数据都可以由强大的 DAM 系统很好地处理。例如,库珀·休伊特博物馆和大都会博物馆构建的 API 由 DAM 系统和开放访问软件许可证提供支持,因此开发人员可以轻松地与收藏品进行交互。

最简单的 DAM 系统是一个关系数据库,能够存储一个物体的多张照片和效果图以及其元数据,包括出处、媒介、日期、获取日期等。这种设计良好的数据库将允许用户跨部门查询相关文物,例如,将明代瓷器花瓶与同一时代或同一捐赠者捐赠的纸质作品联系起来。但越来越多复杂的技术被用于协助编目过程。例如,OCR(光学字符识别)和自然语言识别可用于解读标本集中的打字和手写标签。

数字化植物标本馆

我曾在其他地方展示过,只要有足够的高质量训练数据,机器学习如何帮助识别一个系列中的物品。使用标准的机器学习训练技术,我们能够创建一个 ML 模型来帮助对一组手工纺织品进行分类。要遵循的步骤很简单:

  • 从网络上收集可接受用途的图像
  • 将它们分类到有标签的文件夹中
  • 将它们放入存储系统(例如 S3):

S3

  • 使用 Amazon Rekognition 或 Azure AI Vision 等服务对数据集执行迁移学习并创建自定义 ML 模型:

训练数据集

利用少量图像(我找到了 130 张纱丽面料样式图像,按位置和纱丽编织类型分类),您可以训练可测试的 ML 模型。

一旦模型的表现令你满意,你就可以在 Web 应用中调用它。完整的代码库在这里,你可以在这里观看演示:

纱丽探测器应用的演示。请注意图像的识别精度令人吃惊。

那么,调用自定义 ML 模型的 Web 应用程序的基本用例提供了一个示例,说明管理集合的人可以使用计算机视觉来分类项目,至少是第一次。

从机器学习到人工智能

那么,如何利用人工智能,特别是生成式人工智能来支持对文化遗产的欣赏呢?我有幸前往印度古吉拉特邦,拜访了帕坦的帕托拉织工。这些工匠使用手工织布技术,在织布前将经线纬线扎染,制作单面和双面伊卡特织物,看起来几乎像像素艺术,或者类似于制作彩蛋的技术。

来自帕坦的 Patola

印度古吉拉特邦帕坦的一名纱丽织工正在展示帕托拉风格纱丽的扎染工艺。照片由作者拍摄。

重要的是要意识到,没有任何人工智能过程能够改善这种艺术形式。它已经传承了一代又一代,我们应该把它视为值得珍惜和保护的东西。因此,怀疑生成式人工智能(它根据已经摄取的图像创造新的东西)能否创造出比 Patola 纱丽更好的东西是毫无意义的。相反,我们应该把注意力集中在是否有足够高质量的图像可用于训练这些模型,这让我们回到了 DAMS。

人工智能时代的风险与前景

在这个充满希望的人工智能新时代,手工艺可能面临风险。这些系统创建的内容从定义上来说与来源脱节,归因可能很混乱。结果可能是肤浅的,甚至是幻觉。来源甚至可以被抹去。与此同时,ChatGPT 和 PartyRock.aws 等系统的广泛使用极大地使一些高科技系统民主化,为更多不同的声音参与打开了大门,这将改善生成的结果。

我测试了一个生成式人工智能系统 (PartyRock.aws),通过构建一个人工智能应用程序 SilkWeave(自己尝试一下! ) ,看看我能在多大程度上推动它生成给定风格的纱丽设计。结果好坏参半:

纱丽款式

PartyRock 生产的纱丽

我推动它交付了云设计的几次迭代,然而:

云纱丽设计

我对结果非常满意,因此委托人对我的纱丽进行刺绣,以便我在印度穿着:世界上第一件 AI 纱丽!

赚钱机会:SarAI

“SarAI”——世界上第一件由人工智能生成的纱丽,紫色丝绸上点缀着雷沙姆线绣云彩,在古吉拉特邦缝制而成。

深入探索:走向深层文化

然而,手工纺织品有着比人们通常认识到的更深层的含义。这些昂贵服装的图案往往经过精心挑选,具有深远的意义。例如,巴纳拉西织工使用的视觉词汇值得仔细研究。我们能否要求生成式人工智能系统根据我们希望图案传达的含义为我们设计一款纱丽?一种秘密代码?

Banarasi 纱丽图案包含佩斯利花纹、花架、芒果、蔓生藤蔓、狩猎场景等一系列元素。要求法学硕士根据以下提示制作纱丽“Banarasi 纱丽设计通过背景和披肩中的符号象征好运、生育和繁荣”会产生混乱:

随机生成

显然,该模型没有接触这种非常具体和深层的文化。但是,有一种方法可以让 LLM 更精确一些:使用知识库。您可以在这里找到它们与 Amazon Bedrock 的连接,它们可以作为经过审查的来源,可以提高您的提示。

Bedrock 的 KB

该知识库是通过将法学硕士 (LLM) 连接至经过审查的在线资源而构建的。

有了更好的提示,就可以创建更好的图像:

设计更佳

根据增强提示,该设计通过包括芒果、佩斯利花纹、花鸟和鹎鸟来象征繁荣、好运和生育。


总之,利用技术保护和更好地理解物质文化必然会引领当今的人工智能时代。如果谨慎行事,我们可以利用人工智能来创造新的、没有意义和出处的文物,而是更好地理解和欣赏我们继承的遗产,将它们保存下来,供下一代珍藏。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值