在深度学习中,Batch Size(批量大小)是控制数据处理批次的重要参数。特别是使用 Keras 构建神经网络时,Batch Size 是决定模型性能、训练速度和预测精度的关键因素。它决定了模型在执行每次权重更新之前所需处理的样本数量,直接影响模型的学习效率和资源消耗。
本文将结合具体代码实例,通过序列预测任务详细介绍如何在训练和预测阶段灵活调整 Batch Size,以确保模型在各阶段的性能和精度。
Batch Size
批量大小(Batch Size)定义了在神经网络进行一次权重更新之前所处理的样本数量。通过控制 Batch Size 的大小,可以在模型的收敛速度与对数据噪声的适应性之间找到平衡。较大的 Batch Size 通常会加快收敛速度,使模型更快达到局部最优,但较小的 Batch Size 则有助于提升模型的鲁棒性,使其更好地应对数据中的噪声。
Batch Size 设定 | 场景 | 优点 | 缺点 |
---|---|---|---|
大 Batch Size | 训练阶段 | 加速训练过程,降低迭代次数 | 需要更高的计算资源,易陷入局部最优 |
小 Batch Size |