当面对一个大量数据的问题时,如何确保模型不仅拥有良好的性能,同时还能保持其泛化能力,避免过拟合呢?这是一个在数据分析和机器学习领域经常遇到的问题。
在实际生活中比如有一堆关于学生的学习数据,包括他们的学习时间、作业成绩、考试成绩和最终的学期成绩,并且这些数据按照学期成绩的优良来分类。想要构建一个模型,通过学习时间、作业成绩和考试成绩来预测学生的学期成绩类别。为了评估模型的性能需要将数据集分成训练集和测试集,但是仅仅随机划分是不够的,需要确保训练集和测试集中各类别的比例与整个数据集中的比例相似,这样才能更准确地评估模型的性能。
这时RepeatedStratifiedKFold
就派上用场了。这是一个强大的交叉验证工具,它能确保在每次划分时,各个类别在训练集和测试集中的比例与整个数据集中的比例相似。而且它还允许多次重复抽样过程,提供更稳健的模型性能评估。
假设有一组学生的学习数据如下:
学习时间(小时) | 作业成绩 | 考试成绩 | 学期成绩类别 |
---|---|---|---|
10 | 80 | 85 | 优 |
8 | 70 | 75 | 良 |
15 | 90 | 92 | 优 |
7 | 60 | 65 | 及格 |
12 | 85 | 89 | 优 |
6 | 55 | 60 | 及格 |
8 | 75 | 78 | 良 |
9 | 65 | 70 | 良 |
14 | 88 | 90 | 优 |
5 | 50 | 55 | 及格 |
在这个数据集中有两类学生:‘优’ 和 ‘及格’。使用 RepeatedStratifiedKFold