【Python机器学习】零基础掌握RepeatedStratifiedKFold交叉验证

文章介绍了如何使用RepeatedStratifiedKFold进行交叉验证,以确保在训练和测试集中各类别比例一致,从而评估模型性能。通过实例展示了在艺术品投资回报分析和餐厅菜品满意度分析中的应用,强调了该方法在处理不平衡数据集时的稳健性和可靠性,同时也指出了其在计算效率上的不足。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

当面对一个大量数据的问题时,如何确保模型不仅拥有良好的性能,同时还能保持其泛化能力,避免过拟合呢?这是一个在数据分析和机器学习领域经常遇到的问题。

在实际生活中比如有一堆关于学生的学习数据,包括他们的学习时间、作业成绩、考试成绩和最终的学期成绩,并且这些数据按照学期成绩的优良来分类。想要构建一个模型,通过学习时间、作业成绩和考试成绩来预测学生的学期成绩类别。为了评估模型的性能需要将数据集分成训练集和测试集,但是仅仅随机划分是不够的,需要确保训练集和测试集中各类别的比例与整个数据集中的比例相似,这样才能更准确地评估模型的性能。

这时RepeatedStratifiedKFold 就派上用场了。这是一个强大的交叉验证工具,它能确保在每次划分时,各个类别在训练集和测试集中的比例与整个数据集中的比例相似。而且它还允许多次重复抽样过程,提供更稳健的模型性能评估。

假设有一组学生的学习数据如下:

学习时间(小时) 作业成绩 考试成绩 学期成绩类别
10 80 85
8 70 75
15 90 92
7 60 65 及格
12 85 89
6 55 60 及格
8 75 78
9 65 70
14 88 90
5 50 55 及格

在这个数据集中有两类学生:‘优’ 和 ‘及格’。使用 RepeatedStratifiedKFold

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mr数据杨

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值