LeetCode(1262):可被三整除的最大和 Greatest Sum Divisible by Three(Java)

234 篇文章 1 订阅
177 篇文章 0 订阅

2019.11.24 LeetCode 从零单刷个人笔记整理(持续更新)

github:https://github.com/ChopinXBP/LeetCode-Babel

这是第一次参加周赛,最后没完全做出这道01背包问题,其关键在于初始值的设定。

建立dp数组,dp[i][j]代表到第i位数字(num[i-1])模3的余数为j的最大累加和。

i=0时的初始值为{0,-INT,-INT},若第1位数字num是3的倍数,则dp={num,-INT,-INT};若不是,则dp={0,num,-INT}/{0,-INT,num}。

利用第i位数字(num[i-1]),计算与上一轮累加和的新模值newmod=(oldmod+num[i-1])%3。最新累加和可以通过01背包思路建立动态转移方程:

dp[i][newmod] = Math.max(dp[i-1][newmod], dp[i-1][oldmod] + nums[i-1]);

传送门:可被三整除的最大和

Given an array nums of integers, we need to find the maximum possible sum of elements of the array such that it is divisible by three.

给你一个整数数组 nums,请你找出并返回能被三整除的元素最大和。

示例 1:
输入:nums = [3,6,5,1,8]
输出:18
解释:选出数字 3, 6, 1 和 8,它们的和是 18(可被 3 整除的最大和)。

示例 2:
输入:nums = [4]
输出:0
解释:4 不能被 3 整除,所以无法选出数字,返回 0。

示例 3:
输入:nums = [1,2,3,4,4]
输出:12
解释:选出数字 1, 3, 4 以及 4,它们的和是 12(可被 3 整除的最大和)。

提示:
1 <= nums.length <= 4 * 10^4
1 <= nums[i] <= 10^4


import java.util.Arrays;

/**
 *
 * 5265. 可被三整除的最大和
 * 给你一个整数数组 nums,请你找出并返回能被三整除的元素最大和。
 *
 */

public class GreatestSumDivisibleByThree {
    //01背包
    public int maxSumDivThree(int[] nums) {
        //dp[i][j]代表到第i位数字(num[i-1])模3的余数为j的最大累加和
        //i=0时的初始值为{0,-INT,-INT},若第1位数字num是3的倍数,则dp={num,-INT,-INT};若不是,则dp={0,num,-INT}/{0,-INT,num}
        int[][] dp = new int[nums.length + 1][3];
        for(int[] list : dp){
            Arrays.fill(list, Integer.MIN_VALUE);
        }
        dp[0][0] = 0;

        for(int i = 1; i <= nums.length; i++){
            //利用第i位数字(num[i-1]),计算与上一轮累加和的新模值newmod=(oldmod+num[i-1])%3
            //最新累加和可以通过01背包思路建立动态转移方程
            //dp[i][newmod] = Math.max(dp[i-1][newmod], dp[i-1][oldmod] + nums[i-1]);
            for(int j = 0; j < 3; j++){
                int mod = (j + nums[i - 1]) % 3;
                dp[i][mod] = Math.max(dp[i - 1][mod], dp[i - 1][j] + nums[i - 1]);
            }
        }
        return dp[nums.length][0];
    }
}




#Coding一小时,Copying一秒钟。留个言点个赞呗,谢谢你#

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值