2018.3.28
实现一个二叉搜索树,因为是一道函数题,题目之前已经给定了C语言裁判代码,因此直接用C语言实现。
满足下面三个条件的二叉树为二叉搜索树:
1.若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值
2.若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值
3.它的左、右子树也分别为二叉搜索树。
主要包括前序、中序、后序遍历和几个操作函数:
1. 函数Insert将X插入二叉搜索树BST并返回结果树的根结点指针;
2. 函数Delete将X从二叉搜索树BST中删除,并返回结果树的根结点指针;如果X不在树中,则打印一行Not Found并返回原树的根结点指针;
3. 函数Find在二叉搜索树BST中找到X,返回该结点的指针;如果找不到则返回空指针;
4. 函数FindMin返回二叉搜索树BST中最小元结点的指针;
5. 函数FindMax返回二叉搜索树BST中最大元结点的指针。
// BinTree.cpp: 定义控制台应用程序的入口点。
//
#include "stdafx.h"
#include <stdio.h>
#include <stdlib.h>
typedef int ElementType;
typedef struct TNode *Position;
typedef Position BinTree;
struct TNode {
ElementType Data;
BinTree Left;
BinTree Right;
};
void PreorderTraversal(BinTree BT); //先序遍历
void InorderTraversal(BinTree BT); //中序遍历
void PostorderTraversal(BinTree BT); //后序遍历
BinTree Insert(BinTree BST, ElementType X);
BinTree Delete(BinTree BST, ElementType X);
Position Find(BinTree BST, ElementType X);
Position FindMin(BinTree BST);
Position FindMax(BinTree BST);
int main()
{
BinTree BST, MinP, MaxP, Tmp;
ElementType X;
int N, i;
BST = NULL;
scanf("%d", &N);
for (i = 0; i<N; i++) {
scanf("%d", &X);
BST = Insert(BST, X);
}
printf("Preorder:"); PreorderTraversal(BST); printf("\n");
MinP = FindMin(BST);
MaxP = FindMax(BST);
scanf("%d", &N);
for (i = 0; i<N; i++) {
scanf("%d", &X);
Tmp = Find(BST, X);
if (Tmp == NULL) printf("%d is not found\n", X);
else {
printf("%d is found\n", Tmp->Data);
if (Tmp == MinP) printf("%d is the smallest key\n", Tmp->Data);
if (Tmp == MaxP) printf("%d is the largest key\n", Tmp->Data);
}
}
scanf("%d", &N);
for (i = 0; i<N; i++) {
scanf("%d", &X);
BST = Delete(BST, X);
}
printf("Inorder:"); InorderTraversal(BST); printf("\n");
system("pause");
return 0;
}
void PreorderTraversal(BinTree BT) {
if (BT) {
printf("%d ", BT->Data);
PreorderTraversal(BT->Left);
PreorderTraversal(BT->Right);
}
}
void InorderTraversal(BinTree BT) {
if (BT) {
InorderTraversal(BT->Left);
printf("%d ", BT->Data);
InorderTraversal(BT->Right);
}
}
void PostorderTraversal(BinTree BT) {
if (BT) {
PostorderTraversal(BT->Left);
PostorderTraversal(BT->Right);
printf("%d ", BT->Data);
}
}
BinTree Insert(BinTree BST, ElementType X) {
//如果当前树结点为空,生成并返回一个结点的二叉搜索树
if (!BST) {
BST = (BinTree)malloc(sizeof(struct TNode));
BST->Data = X;
BST->Left = NULL;
BST->Right = NULL;
}
//否则递归插入左右子树,若元素X已经存在,则不满足二叉树的元素互异性,不进行操作
else {
if (X < BST->Data) {
BST->Left = Insert(BST->Left, X);
}
else if(X > BST->Data)
{
BST->Right = Insert(BST->Right, X);
}
}
return BST;
}
BinTree Delete(BinTree BST, ElementType X) {
Position Tmp;
if (!BST)
printf("Not Found\n"); //若找不到该结点,打印Not Found并返回根节点
else {
if (X < BST->Data) {
BST->Left = Delete(BST->Left, X); //左递归查找删除点
}
else if (X > BST->Data) {
BST->Right = Delete(BST->Right, X); //右递归查找删除点
}
//查找到需要删除的结点
else {
//如果被删除结点有左右两个子结点(取右子树最小或者左子树最大代替被删除结点)
if (BST->Left && BST->Right) {
//从右子树中找最小的元素填充删除结点
Tmp = FindMin(BST->Right);
BST->Data = Tmp->Data;
//从右子树中删除最小元素
BST->Right = Delete(BST->Right, BST->Data);
}
else {
//如果被删除结点有一个或没有子结点
Tmp = BST;
if (!BST->Left) {
BST = BST->Right; //若只有右子结点或无子结点,将结点替换或置NULL
}
else {
BST = BST->Left; //若只有左子结点,将结点替换或置NULL
}
free(Tmp); //释放空间
}
}
}
return BST;
}
Position Find(BinTree BST, ElementType X) {
while (BST) {
//类似二分查找
if (X > BST->Data) {
BST = BST->Right;
}
else if(X < BST->Data)
{
BST = BST->Left;
}
else {
return BST;
}
}
return NULL;
}
Position FindMin(BinTree BST) {
if (!BST)return NULL;
else if (!BST->Left) {
return BST; //返回最左结点
}
else {
return FindMin(BST->Left); //递归查找左分支
}
}
Position FindMax(BinTree BST) {
if (!BST)return NULL;
while (BST->Right) {
BST = BST->Right;
}
return BST;
}
#Coding一小时,Copying一秒钟。留个言点个赞呗,谢谢你#