从0开始学大数据(二)

04 | 移动计算比移动数据更划算

大数据技术和传统的软件开发技术在架构思路上有很大不同,大数据技术更为关注数据,所以相关的架构设计也围绕数据展开,如何存储、计算、传输大规模的数据是要考虑的核心要素。

传统的软件计算处理模型,都是“输入  ->  计算  ->  输出”模型。也就是说,一个程序给它传入一些数据也好,它自己从某个地方读取一些数据也好,总是先有一些输入数据,然后对这些数据进行计算处理,最后得到输出结果。

但是在互联网大数据时代,需要计算处理的数据量急速膨胀。

一来是因为互联网用户数远远超过传统企业的用户,相应产生了更大量的数据;

二来很多以往被忽视的数据重新被发掘利用,比如用户在一个页面的停留时长、鼠标在屏幕移动的轨迹都会被记录下来进行分析。

在稍微大一点的互联网企业,需要计算处理的数据量常常以 PB 计(1015Byte)。正因为如此,传统的计算处理模型不能适用于大数据时代的计算要求。你能想象一个程序读取 PB 级的数据进行计算是怎样一个场景吗?一个程序所能调度的网络带宽(通常数百 MB)、内存容量(通常几十 GB )、磁盘大小(通常数 TB)、CPU 运算速度是不可能满足这种计算要求的。

那么如何解决 PB 级数据进行计算的问题呢?

这个问题的解决思路其实跟大型网站的分布式架构思路是一样的,采用分布式集群的解决方案,用数千台甚至上万台计算机构建一个大数据计算处理集群,利用更多的网络带宽、内存空间、磁盘容量、CPU 核心数去进行计算处理。

关于分布式架构,你可以参考我写的《大型网站技术架构:核心原理与案例分析》这本书,但是大数据计算处理的场景跟网站的实时请求处理场景又有很大不同。

网站实时处理通常针对单个用户的请求操作,虽然大型网站面临大量的高并发请求,比如天猫的“双十一”活动。但是每个用户之间的请求是独立的,只要网站的分布式系统能将不同用户的不同业务请求分配到不同的服务器上,只要这些分布式的服务器之间耦合关系足够小,就可以通过添加更多的服务器去处理更多的用户请求及由此产生的用户数据。这也正是网站系统架构的核心原理。

我们再回过头来看大数据。大数据计算处理通常针对的是网站的存量数据,也就是刚才我提到的全部用户在一段时间内请求产生的数据,这些数据之间是有大量关联的,比如购买同一个商品用户之间的关系,这是使用协同过滤进行商品推荐;比如同一件商品的历史销量走势,这是对历史数据进行统计分析。网站大数据系统要做的就是将这些统计规律和关联关系计算出来,并由此进一步改善网站的用户体验和运营决策。

为了解决这种计算场景的问题,技术专家们设计了一套相应的技术架构方案。最早的时候由 Google 实现并通过论文的方式发表出来,随后根据这些论文,开源社区开发出对应的开源产品,并得到业界的普遍支持和应用。这段历史我们在前面的“预习”中已经讨论过了。

这套方案的核心思路是,既然数据是庞大的,而程序要比数据小得多,将数据输入给程序是不划算的,那么就反其道而行之,将程序分发到数据所在的地方进行计算,也就是所谓的移动计算比移动数据更划算。

有一句古老的谚语,说的是“当一匹马拉不动车的时候,用两匹马拉”。听起来是如此简单的道理,但是在计算机这个最年轻的科技领域,在很长一段时间里却并没有这样做。当一台计算机的处理能力不能满足计算要求的时候,我们并没有想办法用两台计算机去处理,而是换更强大的计算机。商业级的服务器不够用,就升级小型机;小型机不够用,就升级中型机;还不够,升级大型机,升级超级计算机。

在互联网时代之前,这种不断升级计算机硬件的办法还是行得通的,凭借摩尔定律,计算机硬件的处理能力每 18 个月增强一倍,越来越强大的计算机被制造出来。传统企业虽然对计算机的处理需求越来越高,但是工程师和科学家总能制造出满足需求的计算机。

但是这种思路并不适合互联网的技术要求。Google、Facebook、阿里巴巴这些网站每天需要处理数十亿次的用户请求、产生上百 PB 的数据,不可能有一台计算机能够支撑起这么大的计算需求。于是互联网公司不得不换一种思路解决问题,当一台计算机的计算能力不能满足需求的时候,就增加一台计算机,还不够的话,就再增加一台。就这样,由一台计算机起家的小网站,逐渐成长为百万台服务器的巨无霸。Google、Facebook、阿里巴巴这些公司的成长过程都是如此。

但是买一台新计算机和一台老计算机放在一起,就能自己开始工作了吗?两台计算机要想合作构成一个系统,必须要在技术上重新架构。这就是现在互联网企业广泛使用的负载均衡、分布式缓存、分布式数据库、分布式服务等种种分布式系统。当这些分布式技术满足互联网的日常业务需求时,对离线数据和存量数据的处理就被提了出来,当时这些分布式技术并不能满足要求,于是大数据技术就出现了。

现在我们来看,移动计算程序到数据所在位置进行计算是如何实现的呢?

1. 将待处理的大规模数据存储在服务器集群的所有服务器上,主要使用 HDFS 分布式文件存储系统,将文件分成很多块(Block),以块为单位存储在集群的服务器上。

2. 大数据引擎根据集群里不同服务器的计算能力,在每台服务器上启动若干分布式任务执行进程,这些进程会等待给它们分配执行任务。

3. 使用大数据计算框架支持的编程模型进行编程,比如 Hadoop 的 MapReduce 编程模型,或者 Spark 的 RDD 编程模型。应用程序编写好以后,将其打包,MapReduce 和 Spark 都是在 JVM 环境中运行,所以打包出来的是一个 Java 的 JAR 包。

4. 用 Hadoop 或者 Spark 的启动命令执行这个应用程序的 JAR 包,首先执行引擎会解析程序要处理的数据输入路径,根据输入数据量的大小,将数据分成若干片(Split),每一个数据片都分配给一个任务执行进程去处理。

5. 任务执行进程收到分配的任务后,检查自己是否有任务对应的程序包,如果没有就去下载程序包,下载以后通过反射的方式加载程序。走到这里,最重要的一步,也就是移动计算就完成了。

6. 加载程序后,任务执行进程根据分配的数据片的文件地址和数据在文件内的偏移量读取数据,并把数据输入给应用程序相应的方法去执行,从而实现在分布式服务器集群中移动计算程序,对大规模数据进行并行处理的计算目标。

 

这只是大数据计算实现过程的简单描述,具体过程我们会在讲到 HDFS、MapReduce 和 Spark 的时候详细讨论。

 

小结

移动程序到数据所在的地方去执行,这种技术方案其实我们并不陌生。从事 Java 开发的同学可能有过用反射的方式热加载代码执行的经验,如果这个代码是从网络其他地方传输过来的,那就是在移动计算。杀毒软件从服务器更新病毒库,然后在 Windows 内查杀病毒,也是一种移动计算(病毒库)比移动数据(Windows 可能感染病毒的程序)更划算的例子。

大数据技术将移动计算这一编程技巧上升到编程模型的高度,并开发了相应的编程框架,使得开发人员只需要关注大数据的算法实现,而不必关注如何将这个算法在分布式的环境中执行,这极大地简化了大数据的开发难度,并统一了大数据的开发方式,从而使大数据从原来的高高在上,变成了今天的人人参与。

 

思考题:

互联网应用系统架构中有一种重要架构原则是尽量使用无状态的服务,不同服务实例之间不共享状态,也就是不持有数据,用户请求交给任何一个服务实例计算,处理的结果都是一样的,为什么要这样设计?这种架构有什么好处?

 

05 | 从RAID看垂直伸缩到水平伸缩的演化

经过前面的预习和上一期我们聊的,大数据技术主要是要解决大规模数据的计算处理问题,但是我们要想对数据进行计算,首先要解决的其实是大规模数据的存储问题。

我这里有一个直观又现实的问题想问你:如果一个文件的大小超过了一张磁盘的大小,你该如何存储?

我的答案是,单机时代,主要的解决方案是 RAID;分布式时代,主要解决方案是分布式文件系统。

其实不论是在单机时代还是分布式时代,大规模数据存储都需要解决几个核心问题,这些问题都是什么呢?

总结一下,主要有以下三个方面。

1.数据存储容量的问题。既然大数据要解决的是数以 PB 计的数据计算问题,而一般的服务器磁盘容量通常 1~2TB,那么如何存储这么大规模的数据呢?

2.数据读写速度的问题。一般磁盘的连续读写速度为几十 MB,以这样的速度,几十 PB 的数据恐怕要读写到天荒地老。

3.数据可靠性的问题。磁盘大约是计算机设备中最易损坏的硬件了,通常情况一块磁盘使用寿命大概是一年,如果磁盘损坏了,数据怎么办?

在大数据技术出现之前,我们就需要面对这些关于存储的问题,对应的解决方案就是 RAID 技术。

今天我们就先从 RAID 开始,一起看看大规模数据存储方式的演化过程。

RAID(独立磁盘冗余阵列)技术是将多块普通磁盘组成一个阵列,共同对外提供服务。

主要是为了改善磁盘的存储容量、读写速度,增强磁盘的可用性和容错能力。在 RAID 之前,要使用大容量、高可用、高速访问的存储系统需要专门的存储设备,这类设备价格要比 RAID 的几块普通磁盘贵几十倍。RAID 刚出来的时候给我们的感觉像是一种黑科技,但其原理却不复杂,下面我慢慢道来。

目前服务器级别的计算机都支持插入多块磁盘(8 块或者更多),通过使用 RAID 技术,实现数据在多块磁盘上的并发读写和数据备份。

常用 RAID 技术有图中下面这几种,光看图片你可能觉得它们都差不多,下面我给你讲讲它们之间的区别。

首先,我们先假设服务器有 N 块磁盘,RAID 0 是数据在从内存缓冲区写入磁盘时,根据磁盘数量将数据分成 N 份,这些数据同时并发写入 N 块磁盘,使得数据整体写入速度是一块磁盘的 N 倍;读取的时候也一样,因此 RAID  0 具有极快的数据读写速度。但是 RAID  0 不做数据备份,N 块磁盘中只要有一块损坏,数据完整性就被破坏,其他磁盘的数据也都无法使用了。

RAID 1 是数据在写入磁盘时,将一份数据同时写入两块磁盘,这样任何一块磁盘损坏都不会导致数据丢失,插入一块新磁盘就可以通过复制数据的方式自动修复,具有极高的可靠性。结合 RAID  0 和 RAID  1 两种方案构成了 RAID 10,它是将所有磁盘 N 平均分成两份,数据同时在两份磁盘写入,相当于 RAID  1;但是平分成两份,在每一份磁盘(也就是 N/2 块磁盘)里面,利用 RAID  0 技术并发读写,这样既提高可靠性又改善性能。不过 RAID  10 的磁盘利用率较低,有一半的磁盘用来写备份数据。一般情况下,一台服务器上很少出现同时损坏两块磁盘的情况,在只损坏一块磁盘的情况下,如果能利用其他磁盘的数据恢复损坏磁盘的数据,这样在保证可靠性和性能的同时,磁盘利用率也得到大幅提升。

顺着这个思路,RAID 3 可以在数据写入磁盘的时候,将数据分成 N-1 份,并发写入 N-1 块磁盘,并在第 N 块磁盘记录校验数据,这样任何一块磁盘损坏(包括校验数据磁盘),都可以利用其他 N-1 块磁盘的数据修复。但是在数据修改较多的场景中,任何磁盘数据的修改,都会导致第 N 块磁盘重写校验数据。频繁写入的后果是第 N 块磁盘比其他磁盘更容易损坏,需要频繁更换,所以 RAID  3 很少在实践中使用,因此在上面图中也就没有单独列出。

相比 RAID  3,RAID 5 是使用更多的方案。RAID  5 和 RAID  3 很相似,但是校验数据不是写入第 N 块磁盘,而是螺旋式地写入所有磁盘中。这样校验数据的修改也被平均到所有磁盘上,避免 RAID  3 频繁写坏一块磁盘的情况。如果数据需要很高的可靠性,在出现同时损坏两块磁盘的情况下(或者运维管理水平比较落后,坏了一块磁盘但是迟迟没有更换,导致又坏了一块磁盘),仍然需要修复数据,这时候可以使用 RAID 6。RAID  6 和 RAID  5 类似,但是数据只写入 N-2 块磁盘,并螺旋式地在两块磁盘中写入校验信息(使用不同算法生成)。从下面表格中你可以看到在相同磁盘数目(N)的情况下,各种 RAID 技术的比较。

RAID 技术有硬件实现,比如专用的 RAID 卡或者主板直接支持;也可以通过软件实现,在操作系统层面将多块磁盘组成 RAID,从逻辑上视作一个访问目录。RAID 技术在传统关系数据库及文件系统中应用比较广泛,是改善计算机存储特性的重要手段。

现在我来总结一下,看看 RAID 是如何解决我一开始提出的,关于存储的三个关键问题。

1. 数据存储容量的问题。RAID 使用了 N 块磁盘构成一个存储阵列,如果使用 RAID  5,数据就可以存储在 N-1 块磁盘上,这样将存储空间扩大了 N-1 倍。

2. 数据读写速度的问题。RAID 根据可以使用的磁盘数量,将待写入的数据分成多片,并发同时向多块磁盘进行写入,显然写入的速度可以得到明显提高;同理,读取速度也可以得到明显提高。不过,需要注意的是,由于传统机械磁盘的访问延迟主要来自于寻址时间,数据真正进行读写的时间可能只占据整个数据访问时间的一小部分,所以数据分片后对 N 块磁盘进行并发读写操作并不能将访问速度提高 N 倍。

3. 数据可靠性的问题。使用 RAID  10、RAID  5 或者 RAID  6 方案的时候,由于数据有冗余存储,或者存储校验信息,所以当某块磁盘损坏的时候,可以通过其他磁盘上的数据和校验数据将丢失磁盘上的数据还原。

我们对更强计算能力和更大规模数据存储的追求几乎是没有止境的,这似乎是源于人类的天性。神话里人类试图建立一座通天塔到神居住的地方,就是这种追求的体现。

我在上一期提到过,在计算机领域,实现更强的计算能力和更大规模的数据存储有两种思路,一种是升级计算机,一种是用分布式系统。

前一种也被称作“垂直伸缩”(scaling up),通过升级 CPU、内存、磁盘等将一台计算机变得更强大;

后一种是“水平伸缩”(scaling out),添加更多的计算机到系统中,从而实现更强大的计算能力。

在计算机发展的早期,我们获得更强大计算能力的手段主要依靠垂直伸缩。一方面拜摩尔定律所赐,每 18 个月计算机的处理能力提升一倍;另一方面由于不断研究新的计算机体系结构,小型机、中型机、大型机、超级计算机,不断刷新我们的认知。

但是到了互联网时代,这种垂直伸缩的路子走不通了,一方面是成本问题,互联网公司面对巨大的不确定性市场,无法为一个潜在的需要巨大计算资源的产品一下投入很多钱去购买大型计算机;另一方面,对于 Google 这样的公司和产品而言,即使是世界上最强大的超级计算机也无法满足其对计算资源的需求。所以互联网公司走向了一条新的道路:水平伸缩,在一个系统中不断添加计算机,以满足不断增长的用户和数据对计算资源的需求。

这就是最近十几年引导技术潮流的分布式与大数据技术。RAID 可以看作是一种垂直伸缩,一台计算机集成更多的磁盘实现数据更大规模、更安全可靠的存储以及更快的访问速度。而 HDFS 则是水平伸缩,通过添加更多的服务器实现数据更大、更快、更安全存储与访问。

RAID 技术只是在单台服务器的多块磁盘上组成阵列,大数据需要更大规模的存储空间和更快的访问速度。将 RAID 思想原理应用到分布式服务器集群上,就形成了 Hadoop 分布式文件系统 HDFS 的架构思想。垂直伸缩总有尽头,水平伸缩理论上是没有止境的,在实践中,数万台服务器的 HDFS 集群已经出现,我会在下一期谈谈 HDFS 的架构。

思考题

传统机械磁盘进行数据连续写入的时候,比如磁盘以日志格式连续写入操作,其写入速度远远大于磁盘随机写入的速度,比如关系数据库连续更新若干条数据记录,你知道这是为什么吗?

 

06 | 新技术层出不穷,HDFS依然是存储的王者

我们知道,Google 大数据“三驾马车”的第一驾是 GFS(Google 文件系统),而 Hadoop 的第一个产品是 HDFS,可以说分布式文件存储是分布式计算的基础,也可见分布式文件存储的重要性。

如果我们将大数据计算比作烹饪,那么数据就是食材,而 Hadoop 分布式文件系统 HDFS 就是烧菜的那口大锅。厨师来来往往,食材进进出出,各种菜肴层出不穷,而不变的则是那口大锅。大数据也是如此,这些年来,各种计算框架、各种算法、各种应用场景不断推陈出新,让人眼花缭乱,但是大数据存储的王者依然是 HDFS。

为什么 HDFS 的地位如此稳固呢?在整个大数据体系里面,最宝贵、最难以代替的资产就是数据,大数据所有的一切都要围绕数据展开。HDFS 作为最早的大数据存储系统,存储着宝贵的数据资产,各种新的算法、框架要想得到人们的广泛使用,必须支持 HDFS 才能获取已经存储在里面的数据。

所以大数据技术越发展,新技术越多,HDFS 得到的支持越多,我们越离不开 HDFS。HDFS 也许不是最好的大数据存储技术,但依然最重要的大数据存储技术。那我们就从 HDFS 的原理说起,今天我们来聊聊HDFS 是如何实现大数据高速、可靠的存储和访问的。

Hadoop 分布式文件系统 HDFS 的设计目标是管理数以千计的服务器、数以万计的磁盘,将这么大规模的服务器计算资源当作一个单一的存储系统进行管理,对应用程序提供数以 PB 计的存储容量,让应用程序像使用普通文件系统一样存储大规模的文件数据。

如何设计这样一个分布式文件系统?其实思路很简单。我们先复习一下专栏上一期,我讲了 RAID 磁盘阵列存储,RAID 将数据分片后在多块磁盘上并发进行读写访问,从而提高了存储容量、加快了访问速度,并通过数据的冗余校验提高了数据的可靠性,即使某块磁盘损坏也不会丢失数据。

将 RAID 的设计理念扩大到整个分布式服务器集群,就产生了分布式文件系统,Hadoop 分布式文件系统的核心原理就是如此。和 RAID 在多个磁盘上进行文件存储及并行读写的思路一样,HDFS 是在一个大规模分布式服务器集群上,对数据分片后进行并行读写及冗余存储。因为 HDFS 可以部署在一个比较大的服务器集群上,集群中所有服务器的磁盘都可供 HDFS 使用,所以整个 HDFS 的存储空间可以达到 PB 级容量。

上图是 HDFS 的架构图,从图中你可以看到 HDFS 的关键组件有两个,一个是 DataNode,一个是 NameNode。

DataNode 负责文件数据的存储和读写操作,HDFS 将文件数据分割成若干数据块(Block),每个 DataNode 存储一部分数据块,这样文件就分布存储在整个 HDFS 服务器集群中。

应用程序客户端(Client)可以并行对这些数据块进行访问,从而使得 HDFS 可以在服务器集群规模上实现数据并行访问,极大地提高了访问速度。

在实践中,HDFS 集群的 DataNode 服务器会有很多台,一般在几百台到几千台这样的规模,每台服务器配有数块磁盘,整个集群的存储容量大概在几 PB 到数百 PB。

NameNode 负责整个分布式文件系统的元数据(MetaData)管理,也就是文件路径名、数据块的 ID 以及存储位置等信息,相当于操作系统中文件分配表(FAT)的角色。

HDFS 为了保证数据的高可用,会将一个数据块复制为多份(缺省情况为 3 份),并将多份相同的数据块存储在不同的服务器上,甚至不同的机架上。这样当有磁盘损坏,或者某个 DataNode 服务器宕机,甚至某个交换机宕机,导致其存储的数据块不能访问的时候,客户端会查找其备份的数据块进行访问。

下面这张图是数据块多份复制存储的示意,图中对于文件 /users/sameerp/data/part-0,其复制备份数设置为 2,存储的 BlockID 分别为 1、3。

Block1 的两个备份存储在 DataNode0 和 DataNode2 两个服务器上,

Block3 的两个备份存储 DataNode4 和 DataNode6 两个服务器上,

上述任何一台服务器宕机后,每个数据块都至少还有一个备份存在,不会影响对文件 /users/sameerp/data/part-0 的访问。

和 RAID 一样,数据分成若干数据块后存储到不同服务器上,可以实现数据大容量存储,并且不同分片的数据可以并行进行读 / 写操作,进而实现数据的高速访问。你可以看到,HDFS 的大容量存储和高速访问相对比较容易实现,但是 HDFS 是如何保证存储的高可用性呢?我们尝试从不同层面来讨论一下 HDFS 的高可用设计。

1. 数据存储故障容错

磁盘介质在存储过程中受环境或者老化影响,其存储的数据可能会出现错乱。HDFS 的应对措施是,对于存储在 DataNode 上的数据块,计算并存储校验和(CheckSum)。在读取数据的时候,重新计算读取出来的数据的校验和,如果校验不正确就抛出异常,应用程序捕获异常后就到其他 DataNode 上读取备份数据。

2. 磁盘故障容错

如果 DataNode 监测到本机的某块磁盘损坏,就将该块磁盘上存储的所有 BlockID 报告给 NameNode,NameNode 检查这些数据块还在哪些 DataNode 上有备份,通知相应的 DataNode 服务器将对应的数据块复制到其他服务器上,以保证数据块的备份数满足要求。

3.DataNode 故障容错

DataNode 会通过心跳和 NameNode 保持通信,如果 DataNode 超时未发送心跳,NameNode 就会认为这个 DataNode 已经宕机失效,立即查找这个 DataNode 上存储的数据块有哪些,以及这些数据块还存储在哪些服务器上,随后通知这些服务器再复制一份数据块到其他服务器上,保证 HDFS 存储的数据块备份数符合用户设置的数目,即使再出现服务器宕机,也不会丢失数据。

4.NameNode 故障容错

NameNode 是整个 HDFS 的核心,记录着 HDFS 文件分配表信息,所有的文件路径和数据块存储信息都保存在 NameNode,如果 NameNode 故障,整个 HDFS 系统集群都无法使用;如果 NameNode 上记录的数据丢失,整个集群所有 DataNode 存储的数据也就没用了。所以,NameNode 高可用容错能力非常重要。NameNode 采用主从热备的方式提供高可用服务,请看下图。

集群部署两台 NameNode 服务器,一台作为主服务器提供服务,一台作为从服务器进行热备,两台服务器通过 ZooKeeper 选举,主要是通过争夺 znode 锁资源,决定谁是主服务器。而 DataNode 则会向两个 NameNode 同时发送心跳数据,但是只有主 NameNode 才能向 DataNode 返回控制信息。

正常运行期间,主从 NameNode 之间通过一个共享存储系统 shared edits 来同步文件系统的元数据信息。当主 NameNode 服务器宕机,从 NameNode 会通过 ZooKeeper 升级成为主服务器,并保证 HDFS 集群的元数据信息,也就是文件分配表信息完整一致。

对于一个软件系统而言,性能差一点,用户也许可以接受;使用体验差,也许也能忍受。但是如果可用性差,经常出故障导致不可用,那就比较麻烦了;如果出现重要数据丢失,那开发工程师绝对是摊上大事了。

而分布式系统可能出故障地方又非常多,内存、CPU、主板、磁盘会损坏,服务器会宕机,网络会中断,机房会停电,所有这些都可能会引起软件系统的不可用,甚至数据永久丢失。所以在设计分布式系统的时候,软件工程师一定要绷紧可用性这根弦,思考在各种可能的故障情况下,如何保证整个软件系统依然是可用的。

根据我的经验,一般说来,常用的保证系统可用性的策略有冗余备份、失效转移和降级限流。

虽然这 3 种策略你可能早已耳熟能详,但还是有一些容易被忽略的地方。比如冗余备份,任何程序、任何数据,都至少要有一个备份,也就是说程序至少要部署到两台服务器,数据至少要备份到另一台服务器上。

此外,稍有规模的互联网企业都会建设多个数据中心,数据中心之间互相进行备份,用户请求可能会被分发到任何一个数据中心,即所谓的异地多活,在遭遇地域性的重大故障和自然灾害的时候,依然保证应用的高可用。

当要访问的程序或者数据无法访问时,需要将访问请求转移到备份的程序或者数据所在的服务器上,这也就是失效转移。

失效转移你应该注意的是失效的鉴定,像 NameNode 这样主从服务器管理同一份数据的场景,如果从服务器错误地以为主服务器宕机而接管集群管理,会出现主从服务器一起对 DataNode 发送指令,进而导致集群混乱,也就是所谓的“脑裂”。这也是这类场景选举主服务器时,引入 ZooKeeper 的原因。

ZooKeeper 的工作原理,我将会在后面专门分析。

当大量的用户请求或者数据处理请求到达的时候,由于计算资源有限,可能无法处理如此大量的请求,进而导致资源耗尽,系统崩溃。这种情况下,可以拒绝部分请求,即进行限流;也可以关闭部分功能,降低资源消耗,即进行降级。

限流是互联网应用的常备功能,因为超出负载能力的访问流量在何时会突然到来,你根本无法预料,所以必须提前做好准备,当遇到突发高峰流量时,就可以立即启动限流。

而降级通常是为可预知的场景准备的,比如电商的“双十一”促销,为了保障促销活动期间应用的核心功能能够正常运行,比如下单功能,可以对系统进行降级处理,关闭部分非重要功能,比如商品评价功能。

小结

我们小结一下,看看 HDFS 是如何通过大规模分布式服务器集群实现数据的大容量、高速、可靠存储、访问的。

1. 文件数据以数据块的方式进行切分,数据块可以存储在集群任意 DataNode 服务器上,所以 HDFS 存储的文件可以非常大,一个文件理论上可以占据整个 HDFS 服务器集群上的所有磁盘,实现了大容量存储。

2.HDFS 一般的访问模式是通过 MapReduce 程序在计算时读取,MapReduce 对输入数据进行分片读取,通常一个分片就是一个数据块,每个数据块分配一个计算进程,这样就可以同时启动很多进程对一个 HDFS 文件的多个数据块进行并发访问,从而实现数据的高速访问。关于 MapReduce 的具体处理过程,我们会在专栏后面详细讨论。

3.DataNode 存储的数据块会进行复制,使每个数据块在集群里有多个备份,保证了数据的可靠性,并通过一系列的故障容错手段实现 HDFS 系统中主要组件的高可用,进而保证数据和整个系统的高可用。

 

思考题

今天留一道有意思的思考题,你可以先想象一个场景,我们想利用全世界的个人电脑、手机、平板上的空闲存储空间,构成一个可以付费共享的分布式文件系统,希望用户可以安装一个 App 在自己的个人设备上,将个人资料安全地存储到这个分布式文件系统中,并支付一定费用;用户也可以用这个 App 将自己设备上的空闲存储空间共享出去,成为这个分布式文件系统存储的一部分,并收取一定费用。我想问你的是,如果是你来设计这个分布式文件系统,你是怎么思考的?你的设计方案是什么?

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值