机器学习-7-机器学习中常用的可视化方式总结

本文总结了机器学习中常见的可视化方式,包括监督学习和无监督学习。在监督学习中,详细介绍了支持向量机的决策边界绘制,并探讨了自定义函数、mlxtend和sklearn库的使用。在无监督学习部分,通过K均值聚类展示了聚类分析的可视化。此外,还介绍了yellowbrick库在模型选择中的应用,如混淆矩阵、ROC曲线、精度-召回率曲线和簇间距离图,帮助评估和优化模型性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参考通透!!监督学习和无监督学习全总结!
参考机器学习中的可视化

1 监督学习和无监督学习

监督学习和无监督学习,它们之间的主要区别在于训练数据的标签信息是否提供。

1.1 概述

一、监督学习(Supervised Learning)
(1)标签信息: 监督学习使用带有标签的训练数据。这意味着每个训练样本都有一个相关联的标签,即对应的输出或目标值。
(2)任务类型: 监督学习用于解决分类和回归等任务。在分类任务中,模型预测输入数据属于哪个类别;而在回归任务中,模型预测一个连续值。
(3)学习过程: 模型通过学习输入与相应标签之间的关系来进行训练。算法通过最小化预测值与实际标签之间的差距来优化模型。
(4)例子: 支持向量机(SVM)、决策树、神经网络等都是监督学习的例子。

二、无监

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

皮皮冰燃

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值