机器学习-10-可解释性机器学习库Shapash

1 机器学习的可解释性

1.1 可解释性简介

在机器学习的场景中,可解释性(interpretability)就表示模型能够使用人类可认知的说法进行解释和呈现。
机器学习模型被许多人称为“黑盒”。 这意味着虽然我们可以从中获得准确的预测,但我们无法清楚地解释或识别这些预测背后的逻辑。

想象一下,在工作中如何跟业务的领导讲解自己的模型呢,他们可是对计算机可能没有任何背景的,如何让领导能够更好的理解,自己做的算法模型,有用

为什么模型给出预测结果了还不满意,还要这么执意于知道模型是如何做出预测的?这和模型在真实世界中产生的影响有很大关系。

由可解释性带来的好处:
(1)可靠性
(2)易于调试
(3)启发特征工程思路
(4)指导后续数据搜集
(5)指导人为决策
(6)建立信任

1.2 可解释性框架

这里有一个可解释机器学习的大框架。在某种程度上,我们通过从真实世界(World)中获取一些原始数据(Data),并用这这些数据进行更深入的预测分析(Black Box Model)。而模型的解释性方法(In

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

皮皮冰燃

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值