深度学习-159-综述之混合专家模型和推理模型以及工作流和智能体的概念


专家混合模型是属于LLM模型架构层面的概念。混合推理模型属于模型应用层面,在快速响应和复杂推理之间切换。一个智能体=多个工作流的组合,智能体可以拆解为多个子任务,而每个子任务可能是一个工作流。

1 专家混合模型(MoE)

专家混合模型(Mixture of Experts, MoE)是一种特殊的神经网络架构,它通过将输入数据分配给多个“专家”子网络来处理复杂问题。每个专家负责学习输入数据的一个特定方面或模式,而一个门控网络决定如何将输入分配给这些专家,并最终结合他们的输出。

专家混合模型(Mixture of Experts, MoE)的两个主要组成部分——专家(Experts)和路由器(Router)。
在这里插入图片描述
专家混合模型(MoE)是一种通过使用多个不同的子模型(或“专家”)来提升LLM质量的技术。

MoE的两个主要组成部分为:
(1)专家(Experts):每个前馈神经网络层(FFNN)现在都有一组可以选择的“专家”。这些“专家”通常本身也是前馈神经网络(FFNN)。

(2)路由器或门控网络(Router或Gate Network):决定哪些token被发送到哪些专家。

最后还有一个组合策略࿱

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

皮皮冰燃

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值