卷积、池化、多通道
http://www.jianshu.com/p/606a33ba04ff
http://www.cnblogs.com/nsnow/p/4562363.html
随机森林
是用随机的方式建立一个森林,森林里面有很多的决策树组成,随机森林的每一棵决策树之间是没有关联的。随机森林可以用于分类和回归。
http://blog.csdn.net/haimengao/article/details/49615955
条件随机场CRF:
想象一下,你有 Justin Bieber 一天生活中的一连串快照,你想在这些照片上面打上活动内容的标签(吃睡、睡觉、开车等)。你会怎么做?
一种方式是忽略这些快照的本质,建立一个图片分类器。举个例子,事先给定一个月的打标快照,你可能会了学到在早上6点拍的较暗的照片很可能是在睡觉,有很多明亮颜色的照片,很可以是关于跳舞,照片中有车那应该是在开车等等。
然而,忽略顺序关联,你会丢失很多信息。例如,如果你看到一张嘴张的特写照片,那它应该打标成吃饭还是唱歌呢?如果上一张 Justin Bieber 的照片中他在吃饭或者做菜,那当前这张照片很可能是他在吃饭;但如果上一张照片中 Justin Bieber 在唱歌或者跳舞,那这张很可能是在说他也在唱歌。
因此,为了提高我们打标的准确率,我们应该结合参考相近照片,这正是条件随机场(condition random field)所做的事情
https://zhuanlan.zhihu.com/p/25558273
LBP特征:
LBP(
Local Binary Pattern,局部二值模式)是一种用来描述图像局部纹理特征的算子;它具有旋转不变性和灰度不变性等显著的优点。
http://blog.csdn.net/zouxy09/article/details/7929531
L2 norm:
L2范数
也就是在规则化参数的同时最小化误差。最小化误差是为了让我们的模型拟合我们的训练数据,而规则化参数是防止我们的模型过分拟合我们的训练数据。多么简约的哲学啊!因为参数太多,会导致我们的模型复杂度上升,容易过拟合,也就是我们的训练误差会很小。但训练误差小并不是我们的最终目标,我们的目标是希望模型的测试误差小,也就是能准确的预测新的样本。所以,我们需要保证模型“简单”的基础上最小化训练误差,这样得到的参数才具有好的泛化性能(也就是测试误差也小),而模型“简单”就是通过规则函数来实现的。 http://blog.csdn.net/zouxy09/article/details/24971995
http://blog.csdn.net/u013105549/article/details/50493069
OpenCV:无法启动此程序,因为计算机中丢失opencv_world310.dll
http://blog.csdn.net/u013015629/article/details/52424595
支持向量机(SVM)是什么意思?
https://www.zhihu.com/question/21094489