网上资源笔记

卷积、池化、多通道

http://www.jianshu.com/p/606a33ba04ff



http://www.cnblogs.com/nsnow/p/4562363.html

随机森林

是用随机的方式建立一个森林,森林里面有很多的决策树组成,随机森林的每一棵决策树之间是没有关联的。随机森林可以用于分类和回归。 

http://blog.csdn.net/haimengao/article/details/49615955


条件随机场CRF:

想象一下,你有 Justin Bieber 一天生活中的一连串快照,你想在这些照片上面打上活动内容的标签(吃睡、睡觉、开车等)。你会怎么做?

一种方式是忽略这些快照的本质,建立一个图片分类器。举个例子,事先给定一个月的打标快照,你可能会了学到在早上6点拍的较暗的照片很可能是在睡觉,有很多明亮颜色的照片,很可以是关于跳舞,照片中有车那应该是在开车等等。

然而,忽略顺序关联,你会丢失很多信息。例如,如果你看到一张嘴张的特写照片,那它应该打标成吃饭还是唱歌呢?如果上一张 Justin Bieber 的照片中他在吃饭或者做菜,那当前这张照片很可能是他在吃饭;但如果上一张照片中 Justin Bieber 在唱歌或者跳舞,那这张很可能是在说他也在唱歌。

因此,为了提高我们打标的准确率,我们应该结合参考相近照片,这正是条件随机场(condition random field)所做的事情



https://zhuanlan.zhihu.com/p/25558273


LBP特征:


 LBP

Local Binary Pattern,局部二值模式)是一种用来描述图像局部纹理特征的算子;它具有旋转不变性和灰度不变性等显著的优点。

http://blog.csdn.net/zouxy09/article/details/7929531


L2 norm:

 L2范数

也就是在规则化参数的同时最小化误差。最小化误差是为了让我们的模型拟合我们的训练数据,而规则化参数是防止我们的模型过分拟合我们的训练数据。多么简约的哲学啊!因为参数太多,会导致我们的模型复杂度上升,容易过拟合,也就是我们的训练误差会很小。但训练误差小并不是我们的最终目标,我们的目标是希望模型的测试误差小,也就是能准确的预测新的样本。所以,我们需要保证模型“简单”的基础上最小化训练误差,这样得到的参数才具有好的泛化性能(也就是测试误差也小),而模型“简单”就是通过规则函数来实现的。  http://blog.csdn.net/zouxy09/article/details/24971995


OpenCV3.1.0+VS2013开发环境配置

http://blog.csdn.net/u013105549/article/details/50493069

OpenCV:无法启动此程序,因为计算机中丢失opencv_world310.dll

http://blog.csdn.net/u013015629/article/details/52424595


支持向量机(SVM)是什么意思?



https://www.zhihu.com/question/21094489

 

SVM(Support Vector Machine)读书笔记三(Soft-margin SVM)



http://blog.csdn.net/jackie_zhu/article/details/52097306




edgebox


http://blog.csdn.net/muyouhang/article/details/51420026


http://blog.sina.com.cn/s/blog_e1b9226a0102w5rt.html


凸集


http://blog.sina.com.cn/s/blog_65956f180100rs95.html


在Matlab环境下解算参数时,矩阵的大小超出了Matlab Preference所设置的极限,便会提示错误

http://blog.sciencenet.cn/home.php?mod=space&uid=1217335&do=blog&id=981179


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值