
camera2
宁可一思进莫在一思停
这个作者很懒,什么都没留下…
展开
-
一、GMS 实践过程总结目录
@[TOC]#2、CTS 源码地址[TOC]1原创 2020-05-25 23:00:29 · 333 阅读 · 0 评论 -
第三方应用camera卡顿不流畅和弱光下成像预览录像偏暗问题i
第三方应用camera卡顿不流畅和弱光下呈现偏暗1.首先查看log分析,预览 录像时的帧率1.1第三方应用自身固定了帧率,帧率太低,就会预览卡顿不流畅 和 弱光下预览偏暗若固定帧率,可联系app应用更该成动态或者采用规避方案下发过程中获取包名重新设定动态帧率1.2第三方应用设置了动态帧率2.若动态帧率还是卡顿2.1app性能:预览过程是否加载了自己本身的算法,导致处理速度慢...原创 2018-11-14 23:10:03 · 2782 阅读 · 0 评论 -
在高通平台添加或者移植一个完整的camera
OV88651、kernel部分:A、kernel_driver:把驱动文件ov8865_qtech_f8865ac.c 放到kernel/drivers/media/platform/msm/camera_v2/sensor/目录下B、kernel_dtsi:把如下板级信息加到 kernel/arch/arm/boot/dts/msm8610-qrd-came原创 2016-10-14 16:26:19 · 3261 阅读 · 0 评论 -
<9>soc sensor与bayer sensor 区别,内外置isp
SOC Sensor 包含Simple ISP 在里头,可以数位处理pixle後,给出YUV 格式的图像ex: OV7725Bayer Sensor 一般指RAW Data Sensor, 需要外部的DSP/ISP 处理ex:OV9710/2/5依方便性而言,SOC Sensor 比较好若要求影像品质,Bayer Sensor 可以有较多的优化YUV SensorYUV Sensor原创 2016-08-25 10:34:30 · 5681 阅读 · 0 评论 -
camera
转载来自:http://blog.csdn.net/fulinwsuafcie/article/category/1211793转载 2016-05-13 14:01:25 · 407 阅读 · 0 评论 -
Android 设置参数至kernel_ois为例
转载来自:http://blog.csdn.net/liwei16611/article/details/51104491由于最近研究OIS,而android4.4并没有相关逻辑(vendor&hal&kernel)当然Android 6.0拥有完善逻辑,增加OIS光学防抖参数设置(ois参数一般不作为设置参数,仅作实验测试):A:上层逻辑1) 添加接口函数参转载 2016-05-12 18:41:04 · 831 阅读 · 0 评论 -
CCT之CAMERA TUNNING调试学习总结
转载来自:http://bbs.16rd.com/blog-5282-237.html对于MT6589平台camera调试的学习总结,camera调试学习的是对于raw类sensor的调试,对于yuv格式的sensor是由FAE帮助我们调试的。 首先在调试一个camera 之前要准备好调试所需要的环境,实验室是必须的,另外还要有调试的工具安装。调试camera之前要确转载 2016-01-13 10:20:39 · 1097 阅读 · 0 评论 -
<8>降噪
http://home.photofans.cn/home.php?mod=space&uid=9173&do=blog&id=98051相机内置的降噪功能在大多数相机上是一个标准的功能,但是,除非你想直接从卡上打印JPEG影像,你最好还是用编辑软件来降噪。因为软件能够向你提供比在相机内编辑多得多的控制。市面上有很多降噪插件或独立程序,但我们可以先用我们的编辑软件的降噪功能。虽然操作步转载 2016-01-11 11:16:36 · 1069 阅读 · 0 评论 -
CCT之CAMERA TUNNING调试学习总结
转载来自:http://bbs.16rd.com/blog-5282-237.html对于MT6589平台camera调试的学习总结,camera调试学习的是对于raw类sensor的调试,对于yuv格式的sensor是由FAE帮助我们调试的。 首先在调试一个camera 之前要准备好调试所需要的环境,实验室是必须的,另外还要有调试的工具安装。调试camera之前要确保安装好三个转载 2016-01-22 15:51:20 · 1082 阅读 · 0 评论 -
CMOS Image Sensor的测试
对于CMOS Image Sensor的测试有1. AWB 白平衡 (Light box 和 GretagMacbeth ColorChecker 和 IMATEST)2. Gray 灰阶 (Light box 和 KODAK testing card)3. 动态范围(Light box 和ISO14524动态范围测试卡4. AE 曝光收敛范围(Light s转载 2016-01-20 15:30:21 · 5493 阅读 · 0 评论 -
CMOS Sensor的调试经验分享
转载来自http://bbs.52rd.com/forum.php?mod=viewthread&tid=276351&extra=page%3D2%26filter%3Dtypeid%26typeid%3D48&page=1CMOS Sensor的调试经验分享 我这里要介绍的就是CMOS摄像头的一些调试经验。 首先,要认识CMOS摄像头的结构。我们通常拿到的转载 2016-01-20 16:42:04 · 2279 阅读 · 0 评论 -
<2>反拜耳运算
1.反拜耳运算属于数字插值技术的一种。2. 具体来说就是传感器生成图像时,每一个单色像素参考同阵列的其他三个像素捕捉的光学信息,“猜”出本像素接收的其他两种光线的数据,并以此生成包含三色光谱信息的像素。换句话说,反拜耳运算是一种三倍插值运算。与普通用户的常识不同,绝大多数拍摄设备所生成的图像从一开始就是这样插值出来的,所谓“没做任何插值运算”的图像除了少量专业设备外一般是不存在的。原创 2016-01-01 11:30:54 · 5697 阅读 · 0 评论 -
<1>拜耳阵列
一绝大部分数字成像设备的传感器是拜耳阵列传感器。这种传感器的基础形态如下:拜耳阵列传感器的每一个像素都是单色像素,相邻的2x2共四个像素组成一个基本阵列,每个阵列有二绿一蓝一红像素拜耳阵列传感器的像素数量即是所有负责成像的单色像素数量之和。典型地,一个1000万像素传感器会有500万个绿色、250万个红色和250万个蓝色像素。但是几乎所有的数字显示设备,包括显示原创 2016-01-01 11:19:44 · 3131 阅读 · 0 评论 -
<7>iso 快门 光圈
一、光圈光圈是指一个用来控制光线透过镜头,进入机身内感光面的光量的装置,它通常是在镜头内。表达光圈大小我们是用f值,它的大小决定着通过镜头进入感光元件的光线的多少。一些厂商在发布会上都会有写着镜头光圈参数为“F/2.0”、“F/2.4”之类的,这个数值就代表着光圈大小。但注意,并不是数值越大,光圈就越大。而是数值越小,光圈越大光圈越大景深越浅,说得比较俗就是拍摄的主题清晰,而背景是模糊原创 2016-01-01 15:59:11 · 1409 阅读 · 0 评论 -
<6>iso 感光度
ISO数值越高就说明该感光元器件的感光能力越强。ISO的计算公式为H*S=0.8(S感光度,H为曝光量),从公式中我们可以看出,感光度越高,对曝光量的要求就越少。变形公式:H=0.8/s,相同曝光量的前提下,iso50时的曝光时间为iso100时的曝光时间的两倍。常用的ISO值有50、 100 、200、400 、1000等,iso50,iso100在光线充足的情况使用,而高iso值在光线原创 2016-01-01 14:40:58 · 927 阅读 · 0 评论 -
<5>噪点 信噪比
噪点:在场景过暗时,拍照时会出现大量噪点。图片上的小点, 当设定的传感器灵敏度过高(亦即ISO设定过高)时,接收较少光线照射的传感器像素的自身电流会掩盖接收光线所产生的电流,生成无规则色彩的像素点,亦即噪点。黑暗场景下为了拍出亮度正常的照片,用户往往需要设定较高的ISO值,结果就会在图像上发现大量噪点。很显然,这些噪点会严重影响图像的清晰度。传感器抑制噪点的性能被原创 2016-01-01 11:50:53 · 1440 阅读 · 0 评论 -
<4>动态范围,宽容度
1.传感器捕捉场景信息时,场景的明暗反差很有可能超过传感器性能极限。2.场景的明暗反差程度被称为动态范围,3.传感器承受场景明暗反差的范围被称为宽容度,单位是ev。某个场景的动态范围是1档,意味着场景最亮点的亮度是最暗点亮度的2倍;如果是两档就是2^2=4倍,以此类推。晴天中午,太阳与树荫下的亮度差异可以达到近20档。当场景的动态范围超过传感器的宽容度时,记录下的图像中超过宽容度的部分就会原创 2016-01-01 11:48:17 · 1032 阅读 · 0 评论 -
<3>成像设备像素数量、感光面积和图像质量的关系
一.图像清晰度无差值,理想状况下图像的清晰度=图像的像素数量,亦即每一个像素都真实地还原了其捕捉到的场景的某一点的光线信息 拜耳传感器生成图像的实际清晰度在每个方向都等于传感器像素数的约78%但当场景颜色排布较为复杂时,生成的图像往往会出现物体边缘伪彩、条纹物体摩尔纹、边缘锯齿等状况。这些状况降低了图像的实际清晰度 测试设备分辨率时,用设备拍摄原创 2016-01-01 11:40:53 · 1572 阅读 · 0 评论