2.14.5 String literals 4

书籍:《ISO/IEC 14882 2014》

说明:以上内容大部分来自腾讯元宝

如何理解以下内容:

3 [ Note: The characters ’(’ and ’)’ are permitted in a raw-string . Thus, R"delimiter((a|b))delimiter" 
is equivalent to "(a|b)" . — end note ]

在C++中,原始字符串字面量(Raw String Literal)允许直接包含字符 ( 和 ),只要它们不出现在分隔符(delimiter)序列中。以下是具体解释和示例:


​1. 语法规则​

  • ​原始字符串格式​​:R"delimiter(raw_characters)delimiter"

    • delimiter 是自定义的分隔符序列(由1-16个非括号、非反斜杠的字符组成)。
    • raw_characters 是原始字符串内容,​​允许包含 ( 和 )​,只要它们不在分隔符中。
  • ​关键点​​:

    • 分隔符必须首尾一致,且不包含 )
    • 字符串内容中的 ( 和 ) 会被视为普通字符,无需转义。

​2. 示例解析​

​示例代码​​:
const char* str = R"delimiter((a|b))delimiter";
  • ​分隔符​​:delimiter
  • ​内容​​:(a|b)
  • ​等效性​​:该原始字符串等价于普通字符串 "(a|b)"
​输出结果​​:
(a|b)

​3. 设计意图​

  • ​保留括号的原始含义​​:
    在正则表达式、文件路径或数学表达式中,( 和 ) 是常用符号。原始字符串允许直接包含它们,无需转义

    const char* regex = R"(\d{3}-\d{2}-\d{4})";  // 正则表达式中的括号无需转义
  • ​避免分隔符冲突​​:
    若字符串内容需要包含 ),只需选择不包含 ) 的分隔符即可。

    const char* text = R"xyz(This contains ) and " characters)xyz";  // 分隔符为xyz,内容含)

​4. 常见误区​

​误区1:分隔符包含 )
// 错误:分隔符包含),导致字符串提前结束
const char* invalid = R")delimiter((a|b))delimiter)";
// 编译错误:分隔符不匹配
​误区2:混淆分隔符与内容​
// 正确:分隔符为delimiter,内容含)
const char* valid = R"delimiter(This contains ) and " characters)delimiter";

​5. 实际应用场景​

​场景​​传统字符串写法​​原始字符串写法​
正则表达式R"(\d{3}-\d{2}-\d{4})"R"delimiter(\d{3}-\d{2}-\d{4})delimiter"
文件路径R"(C:\Path\To\File)"R"delimiter(C:\Path\To\File)delimiter"
多行文本R"(\nLine1\nLine2)"R"delimiter(\nLine1\nLine2)delimiter"

​6. 总结​

  • ​允许字符​​:原始字符串中的 ( 和 ) 是普通字符,无需转义。
  • ​分隔符选择​​:确保分隔符不包含 ),以避免语法错误。
  • ​核心优势​​:简化包含特殊符号的字符串的书写,提升代码可读性。
数据集介绍:多类别动物目标检测数据集 一、基础信息 数据集名称:多类别动物目标检测数据集 图片数量: - 训练集:6,860张图片 - 验证集:1,960张图片 - 测试集:980张图片 总计:9,800张含动态场景的动物图像 分类类别: Alpaca(羊驼)、Camel(骆驼)、Fox(狐狸)、Lion(狮子)、Mouse(鼠类)、Ostrich(鸵鸟)、Pig(猪)、Rabbit(兔子)、Rhinoceros(犀牛)、Shark(鲨鱼)、Sheep(绵羊)、Snake(蛇)、Whale(鲸鱼) 标注格式: YOLO格式标注,包含目标检测所需的归一化坐标及类别索引,适用于YOLOv5/v7/v8等系列模型训练。 数据特性: 覆盖航拍、地面视角等多种拍摄角度,包含动态行为捕捉及群体/单体目标场景。 二、适用场景 野生动物监测系统: 支持构建无人机/红外相机AI识别系统,用于自然保护区动物种群追踪与生态研究。 智慧农业管理: 适用于畜牧养殖场动物行为分析、数量统计及健康监测等自动化管理场景。 生物多样性研究: 为陆地/海洋生物分布研究提供标注数据支撑,助力濒危物种保护项目。 教育科研应用: 可作为计算机视觉课程实践素材,支持目标检测、迁移学习等AI教学实验。 三、数据集优势 跨物种覆盖全面: 包含13类陆生/水生动物,涵盖家畜、野生动物及濒危物种,支持复杂场景下的模型泛化训练。 动态场景丰富: 捕捉动物运动、群体互动等真实行为模式,提升模型对非静态目标的检测鲁棒性。 标注体系规范: 严格遵循YOLO标注标准,提供精确的边界框定位,支持即插即用的模型训练流程。 多场景适配性: 数据来源涵盖航拍影像、地面监控等多维度视角,适用于农业、生态保护、科研等跨领域应用。 类别平衡优化: 通过分层抽样保证各类别数据分布合理性,避免长尾效应影响模型性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值