轻量化SR
轻量化超分辨率网络
芝麻开花666
这个作者很懒,什么都没留下…
展开
-
轻量化SISR实验结果汇总
目录AWSRN(CVPR2019)CARN(ECCV2018)IMDN(ACMM2019)FALSR(小米AI超分辨率2019)MCAN(小米AI 2019)AWSRN(CVPR2019)也是用到了多尺度的思想。CARN(ECCV2018)IMDN(ACMM2019)FALSR(小米AI超分辨率2019)用神经网络搜索...原创 2020-01-06 19:55:34 · 840 阅读 · 0 评论 -
(MACN小米AI 轻量化SISR)A Matrix-in-matrix Neural Network for Image Super Resolution
代码:https://github.com/macn3388/MCAN1、简介现存的SISR方法难以 用在手机等移动设备上面。However, these GAN-based methods inevitably bring about bad cases that are intolerable in practice基于GAN的方法 不可避免的会产生很多极d端的图像,而这些极端的情...原创 2019-12-27 20:30:58 · 362 阅读 · 0 评论 -
高效网络:Xception, MobileNet, MobileNet V2, ShuffleNet ,ShuffleNet V2
目录一、参数数量和理论计算量二、Xception三、MobileNetV1四、MobileNetV2五、ShuffleNet六、ShuffleNet V2一、参数数量和理论计算量1、定义参数数量(params):关系到模型大小,单位通常为M,通常参数用 float32 表示,所以模型大小是参数数量的 4 倍 理论计算量(FLOPs): 是 floating...原创 2019-12-07 20:35:43 · 5273 阅读 · 0 评论 -
(AWSRN arxiv2019)轻量化。Lightweight Image Super-Resolution with Adaptive Weighted Learning Network
文章链接:https://arxiv.org/abs/1904.02358一、简介These SR networks generally suffer from the problem of a heavy burden on computational resources with large model sizes which limits their wide real-world ...原创 2019-12-06 11:25:35 · 1546 阅读 · 3 评论 -
文献阅读:AIM 2019 Challenge on Constrained Super-Resolution: Methods and Results
这篇文章是AIM2019大赛的一个总结和统计。PIRM2018聚焦于视觉感知和运算效率;NTIRE2019聚焦于真实图像的SR;该比赛设置了三种不同的限制规则。分别为参数量、运行速度、数字指标number of parametersrunning (inference) timefidelity (PSNR)Challenge Methods and Teams4...原创 2019-12-05 21:50:24 · 1071 阅读 · 0 评论 -
(IDN 轻量化CVPR2018)Fast and Accurate Single Image Super-Resolution via Information Distillation N
文章地址:https://arxiv.org/abs/1909.11856v1作者的项目地址:https://github.com/Zheng222/IDN-Caffe论文作者:Zheng Hui 西安电子科技大学一:简单介绍文章做的是轻量化图像超分辨率。二、网络结构网络由三个部分构成:1、特征提取模块a feature extraction blo...原创 2019-12-05 17:21:25 · 861 阅读 · 0 评论 -
(IMDN ACMM2019)轻量化Lightweight Image Super-Resolution with Information Multi-distillation Network
文章地址:https://arxiv.org/pdf/1909.11856.pdf作者的项目地址:代码论文作者:Zheng Hui 西安电子科技大学一、简单介绍受IDN(CVPR2018)的的启发,文章提出了Multi-distillation模块,实现了内存和实时性之间的最优。整个文章的主要的贡献有:1、提出了轻量化的Multi-distillation网络,来快速和准确的做...原创 2019-12-04 21:24:15 · 8164 阅读 · 2 评论