CVPR2022超分辨率汇总(附论文链接/代码/解析)[持续更新]

这篇博客汇总了CVPR2022会议中关于超分辨率的最新研究成果,提供了论文链接、代码资源及详细解析,是了解该领域进展的好资料。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

### CVPR 2022 图像超分辨率重建的开源代码 CVPR 2022 中涉及图像超分辨率重建的研究成果众多,其中许多研究提供了相应的开源实现。以下是几个重要的项目及其特点: #### 1. **Enhancing Video Super-Resolution via Implicit Resampling-based Alignment** 该方法通过隐式重采样对齐技术显著提升了视频超分辨率的效果[^1]。虽然其主要目标是视频处理,但其实现中的部分模块同样适用于单帧图像超分辨率任务。GitHub 地址如下: ```plaintext https://github.com/<username>/CVPR2024_Video_Super_Resolution ``` #### 2. **Spatially-Adaptive Feature Modulation for Efficient Image Super-Resolution** 潘金山团队提出的 SAFMN 方法引入了空间自适应特征调制机制,极大地提高了图像超分辨率的效率和质量[^2]。此方法特别适合资源受限环境下的应用。具体代码可从以下链接获取: ```plaintext https://github.com/sunny2109/SAFMN ``` #### 3. **CVPR 2022 论文代码汇总** 对于更广泛的 CVPR 2022 超分辨率相关工作,可以参考由 DWCTOD 整理的一个全面仓库。该仓库收集了会议期间发布的多篇论文及对应的官方或第三方实现[^3]。访问地址为: ```plaintext https://github.com/DWCTOD/CVPR2022-Papers-with-Code-Demo ``` 在这个仓库中,可以通过关键词搜索找到多个专注于图像超分辨率重建的工作。 --- ### 示例代码片段:基于 PyTorch 的简单超分辨率模型框架 以下是一个基础的超分辨率网络结构示例,供开发者快速上手并测试不同算法效果。 ```python import torch.nn as nn class SimpleSuperResolutionNet(nn.Module): def __init__(self, upscale_factor=2): super(SimpleSuperResolutionNet, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=5, stride=1, padding=2) self.relu = nn.ReLU() self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1) self.pixel_shuffle = nn.PixelShuffle(upscale_factor) def forward(self, x): out = self.relu(self.conv1(x)) out = self.pixel_shuffle(self.conv2(out)) return out ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

芝麻开花666

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值