三维重建
文章平均质量分 71
Never-guess
这个作者很懒,什么都没留下…
展开
-
SFM算法流程
SFM算法流程1. 算法简介SFM算法是一种基于各种收集到的无序图片进行三维重建的离线算法。在进行核心的算法structure-from-motion之前需要一些准备工作,挑选出合适的图片。首先从图片中提取焦距信息(之后初始化BA需要),然后利用SIFT等特征提取算法去提取图像特征,用kd-tree模型去计算两张图片特征点之间的欧式距离进行特征点的匹配,从而找到特征点匹配个数达到要原创 2017-07-10 20:44:10 · 51021 阅读 · 16 评论 -
RANSAC算法应用及opencv实现
一、概述 RANSAC算法的输入是一组观测数据(往往含有较大的噪声或无效点),一个用于解释观测数据的参数化模型以及一些可信的参数。RANSAC通过反复选择数据中的一组随机子集来达成目标。被选取的子集被假设为局内点,并用下述方法进行验证: 1.有一个模型适应于假设的局内点,即所有的未知参数都能从假设的局内点计算得出。 2.用1中得到的模型去测试所有的其它数据,如果某个点适用于估计的模型,认为它原创 2017-07-17 15:09:53 · 6185 阅读 · 2 评论 -
SIFT特征提取分析
SIFT(Scale-invariant feature transform)是一种检测局部特征的算法,该算法通过求一幅图中的特征点(interest points,or corner points)及其有关scale 和 orientation 的描述子得到特征并进行图像特征点匹配,获得了良好效果,详细解析如下:算法描述SIFT特征不只具有尺度不变性,即使改变旋转角度,图像亮度或拍摄视角,仍然能够转载 2017-07-18 14:03:50 · 586 阅读 · 0 评论 -
ORB特征提取详解
网上虽然出现了很多讲解ORB特征提取和描述的方法,但都不够详尽。为了搞明白到底是怎么回事,只能结合别人的博客和原著对ORB的详细原理做一个研究和学习。哪里有不对的地方,请多多指教1、算法介绍ORB(Oriented FAST and Rotated BRIEF)是一种快速特征点提取和描述的算法。这个算法是由Ethan Rublee, Vincent Rabaud, Kurt Konol...转载 2018-05-03 10:49:06 · 29591 阅读 · 1 评论