leetcode算法题--二维数组中的查找

文章介绍了如何使用深度优先搜索(DFS)结合记忆化策略解决LeetCode中的二维数组查找问题,首先提供了一个O(log(n+m))的解决方案,然后优化为利用二维数组类似二叉排序树的性质,将时间复杂度降低到O(m+n)。
摘要由CSDN通过智能技术生成

原题链接:https://leetcode.cn/problems/er-wei-shu-zu-zhong-de-cha-zhao-lcof/

通过dfs+记忆化来解,应该是O(log(n + m))

func findNumberIn2DArray(matrix [][]int, target int) bool {
    n := len(matrix)
    if n == 0 {
       return false
    }
    m := len(matrix[0])
    if m == 0 {
        return false
    }
    memo := make([][]int, n)
    for i := range memo {
        memo[i] = make([]int, m)
        for j := range memo[i] {
            memo[i][j] = -1
        }
    }
    var dfs func(i, j int) bool
    dfs = func(i, j int) bool {
        if memo[i][j] != -1 {
            return memo[i][j] == 1
        }
        if i + 1 < n {
            d := matrix[i + 1][j]
            if d == target {
                return true
            }
            if d < target {
                if dfs(i + 1, j) {
                    return true
                }
            }
        }
        if j + 1 < m {
            r := matrix[i][j + 1]
            if r == target {
                return true
            }
            if r < target {
                if dfs(i, j + 1) {
                    return true
                }
            }
        }
        memo[i][j] = 0
        return false
    }
    if matrix[0][0] == target {
        return true
    }
    return dfs(0, 0)
}

优化方法,从右上角看,数组就想一个二叉排序树(Binary Sort Tree),那么就好做了,时间复杂度为O(m+n)

func findNumberIn2DArray(matrix [][]int, target int) bool {
    n := len(matrix)
    if n == 0 {
        return false
    }
    m := len(matrix[0])
    if m == 0 {
        return false
    }
    i, j := 0, m - 1 
    for i < n && j >= 0 {
        num := matrix[i][j]
        if target == num {
            return true
        } else if target > num {
           i++  
        } else {
           j-- 
        }
    } 
    return false
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值