组合总和类题目汇总

刷leetcode时遇到好几个组合总和类题目,在这里汇总归纳一下

  1. leetcode算法题–组合总和 Ⅳ
  2. 零钱兑换 II
  3. leetcode算法题–组合总和

一般这类题目有两种做法,动态规划或者是dfs。一般如果题目只要求一个组合数,那么一般就使用动态规划做,因为题目会对时间复杂度会做一定限制,使用dfs一般过不了,如第1、2题。如果题目要求组合排列,那么可以使用dfs做,此时题目会对时间复杂度做一定放宽,如第3题。并且这类题目都是可以重复使用数,但是对不同顺序数字排列是否视为不同的组合将题目又分为两类,视为相同,如第2题;视为不同,如第1题。这导致了第1题和第2题的做法有细微不同,非常巧妙。

动态规划思路

先比较第1题和第2题的代码

// 组合总和IV
func combinationSum4(nums []int, target int) int {
    dp :=make([]int, target+1)
    dp[0] = 1
    for i := 1; i <= target; i ++ {
        for _, num := range nums {
            if num <= i {
                dp[i] += dp[i-num]
            } 
        }
    }
    return dp[target]
}
// 零钱兑换II
func change(amount int, coins []int) int {
    dp := make([]int, amount+1)
    dp[0] = 1
    for _, coin := range coins { //每出现一个新的硬币刷新dp
        for i := coin; i <= amount; i ++ {
            dp[i] += dp[i-coin]
        }
    }
    return dp[amount]
}

很容易发现,如果对不同顺序数字排列视为相同,则数组中数就不可以重复使用,于是放在外层循环,反之放在内层循环。

这里借用题解中的话帮助理解

  • 组合总和IV:
    在这里插入图片描述

  • 零钱兑换II
    在这里插入图片描述
    dfs思路

dfs思路其实也比较明显,比较值得注意的是这个idx的传入,可以让dfs不走回头路。

func combinationSum(candidates []int, target int) [][]int {
    res := make([][]int, 0)
    n := len(candidates)
    var dfs func(nums []int, target, idx int)
    dfs = func(nums []int, target, idx int) {
        if target == 0 {
           tmp := make([]int, len(nums)) 
           copy(tmp, nums)
           res = append(res, tmp)
           return 
        }
        for i := idx ; i < n; i ++ {
            c := candidates[i]
            if target - c >= 0{
                nums = append(nums, c)
                dfs(nums, target-c, i) 
                nums = nums[:len(nums)-1] 
            }
        } 
    }
    dfs([]int{}, target, 0)
    return res
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值