写在前面:
最近在重新反刍一些知识,上学时候只知道填鸭考试,却没有深入的去思考一些东西。
1.什么是弧度制和角度制
机械设计中,电机计算中,经常要用的弧度和角度的转换,以前总是感觉很麻烦,最近去思考,为什么非要用弧度,数学家为什么一定要麻烦一遭呢?
角度制:
我们初识接受的教育就是一圈360度,习惯了用30°,45°,60°,90°,180°,360°,这个六十进制表示的角度制。
也有很多的应用场景:
- “态度发生一百八十度大转弯”表示态度改变很大,180度翻转,前后矛盾,戏剧变化;
- 监控摄像头“360度无死角”,360度监控视野,或者服务全方位;
- 当代小说的经典句式“四十五度角仰望天空”,表达理想与现实的分界,刻画青春期的心理情绪。
网上的关于360的来源的说法,可能源于他们观测到的太阳每年运行约360天的天文规律,其实研究过古天文就会发现,360这个数字在天文行星的运行规律中并没有出现,但是很接近,这里面涉及到一个秘传,就是360协调周期的问题,这个不是本文的重点,就不深入了。
然而,这种基于数字神秘主义的划分,始终与圆本身的几何特性存在隔阂,他是一个定义,在数理上和圆并没有联系。
比如60°+sin30°=60°+0.5,如果不学习弧度制,就无法继续计算!因为单位不统一,根本上就是两个东西,甚至我可以定义圆周不是360度,可以是123度这种奇怪的数字。
弧度制
18世纪,当数学家们试图建立微积分与三角函数的桥梁时,角度制的局限性逐渐显露。瑞士数学家欧拉发现,当用360度制计算三角函数导数时,总要带着繁琐的换算系数。他意识到问题的根源在于:角度制是用"人为分割的数值"而非"几何本质"来描述角的大小。
真正的突破来自一个简单的几何观察:当半径为r的圆,有一动点在圆周上运动时,走过的长度就是弧长,与半径r的比值,对应一个确定的圆心角的大小。
或者换一个角度说,当圆心角变化的时候,对应的弧长在变化,说明圆心角一定和弧长有关系,但是弧长的变化,又和半径尺寸有关系,肯定是半径越大,弧长越长。
这说明圆心角,和弧长和半径有关系(想象一个圆也就这两个因素了),但是是怎么推出来弧长/半径 = 确定的圆心角呢?
这里面我暂时还没有找到答案,应该是从三角函数那边过来的。
这个比值不仅消除了圆的尺寸影响,更天然地连接了直线与曲线——当r=1时,弧长就是角度本身!这种以半径丈量圆弧的思维,最终被命名为"弧度制"。 数学推算的奇妙之处在于,我们可以通过数学等式,来把干扰因素去除,找到真正的最本质的东西!
假如圆心角AOB旋转了360°,那么弧长是2πr,计算出弧度是2π。见下图。
这样360°=2π弧度,180°=π弧度,90°=π/2弧度,45°=π/4弧度,60°=π/3弧度,30°=π/6弧度。这样让角度变成了实数,也意味着,角度和数学世界产生了链接!
60°+sin30°=60°+0.5=π/3+0.5=3.14/3+0.5≈1.05+0.5=1.55
令人惊叹的是,弧度制让圆周率π成为了角度转换的天然媒介,这种设计暗示着圆与直线之间的深刻联系。当科学家在量子力学中使用复平面,或在相对论中处理时空曲率时,弧度制提供的几何直觉仍在持续发光。
图片
总结:弧度制的诞生不仅是数学工具的创新,更展现了人类认知模式的进化。它告诉我们:最优雅的数学语言往往诞生于对事物本质的洞察。