POJ 2516Minimum Cost(最小费用最大流)

题意给出n个客户对k种商品的需求量,又给出m个仓库对k种物品的存货量以及对k种物品从i仓库到j客户的一个物品的运费价格,让判断是否可以满足客户需求,然后就是如果满足求出最小的运费.

思路:简单的最小费用最大流,注意建图细节即可。下面解释转自网上。

          首先必须判断m个仓库是否有足够的k种商品给n个客户,如果不足,那么明显就是不行的. 下面假设仓库的商品足够的话:

       对于每一种商品我们都算出满足满足顾客需求量的最小运费即可.所以我们对K种商品分开处理如下,假设当前处理第x种商品,建图如下:

       源点s编号0, m个仓库编号1到m, n个顾客编号m+1到m+n, 汇点编号m+n+1.

       从源点s到每个仓库i有边(s, i, 仓库i对商品x的存货量, 0)

       从每个仓库i到顾客j有边(i, j, INF, 仓库i到顾客j的单位X商品的运费)

       从每个顾客j到汇点t有边(j, t, 顾客j对X商品的需求量, 0)

       然后我们求最小费用最大流即可求出N个顾客对第X种商品的最小运费.


#include <cstdio>
#include <queue>
#include <cstring>
#include <iostream>
#include <cstdlib>
#include <algorithm>
#include <vector>
#include <map>
#include <string>
#include <set>
#include <ctime>
#include <cmath>
#include <cctype>
using namespace std;
#define maxn 300
#define LL long long
int cas=1,T;
const int INF = 1e9;
struct Edge
{
	int from,to,cap,flow,cost;
	Edge(){}
	Edge(int u,int v,int c,int f,int co):from(u),to(v),cap(c),flow(f),cost(co){}
};
int n,m;
struct MCMF
{
//	int s,t;
	vector<Edge>edges;
	vector<int>G[maxn];
	int inq[maxn];         //是否在队列中
	int d[maxn];
	int p[maxn];           //上一条弧
	int a[maxn];           //可改进量

	void init()
	{
		for (int i = 0;i<=n+m+1;i++)
			G[i].clear();
		edges.clear();
	}

	void AddEdge(int from,int to,int cap,int cost)
	{
		edges.push_back(Edge(from,to,cap,0,cost));
		edges.push_back(Edge(to,from,0,0,-cost));
		int mm = edges.size();
		G[from].push_back(mm-2);
		G[to].push_back(mm-1);
	}

	bool BellmanFord(int s,int t,int &flow,int &cost)
	{
		for (int i = 0;i<=n+m+1;i++)
			d[i]=INF;
		memset(inq,0,sizeof(inq));
		d[s]=0;
		inq[s]=1;
		p[s]=0;
		a[s]=INF;
		queue<int>q;
		q.push(s);
		while (!q.empty())
		{
			int u = q.front();q.pop();
			inq[u]=0;
			for (int i = 0;i<G[u].size();i++)
			{
				Edge &e = edges[G[u][i]];
				if (e.cap > e.flow && d[e.to]>d[u]+e.cost)
				{
					d[e.to]=d[u]+e.cost;
					p[e.to]=G[u][i];
					a[e.to]=min(a[u],e.cap-e.flow);
					if (!inq[e.to])
					{
						q.push(e.to);
						inq[e.to]=1;
					}
				}
			}
		}
		if (d[t]==INF)
			return false;        //s-t不连通,失败退出
		flow+=a[t];
		cost+=d[t]*a[t];
		int u = t;
		while (u!=s)
		{
			edges[p[u]].flow+=a[t];
			edges[p[u]^1].flow-=a[t];
			u=edges[p[u]].from;
		}
		return true;
	}

	int Mincost(int s,int t)
	{
		int flow = 0;
		int cost = 0;
		while (BellmanFord(s,t,flow,cost));
		return cost;
	}
}mc;

int need[60][60];        //i顾客对j商品的需求量
int have[60][60];        //i仓库对j商品的供应量
int cost[60][60][60];    //仓库j到i顾客对x商品的运费
int main()
{
	//freopen("in","r",stdin);
	int k;
	while (scanf("%d%d%d",&n,&m,&k)!=EOF && n)
	{
        int goods[maxn];
		int flag = 1;
		memset(goods,0,sizeof(goods));
		for (int i = 1;i<=n;i++)
			for (int j = 1;j<=k;j++)
			{
				scanf("%d",&need[i][j]);
				goods[j]+=need[i][j];
			}

		for (int i = 1;i<=m;i++)
			for (int j = 1;j<=k;j++)
			{
				scanf("%d",&have[i][j]);
				goods[j]-=have[i][j];
			}

		for (int h = 1;h<=k;h++)
			for (int i = 1;i<=n;i++)
				for (int j = 1;j<=m;j++)
					scanf("%d",&cost[h][i][j]);

		for (int i = 1;i<=k;i++)
			if (goods[i]>0)
			{
				flag = 0;
				break;
			}
		if (!flag)
		{
			printf("-1\n");
			continue;
		}

		int mins = 0;
//		mc.init();
        for(int g = 1;g<=k;g++)
		{
            mc.init();
			for (int i = 1;i<=m;i++)
				mc.AddEdge(0,i,have[i][g],0);
			for (int i = 1;i<=n;i++)
				mc.AddEdge(m+i,m+n+1,need[i][g],0);
			for (int i = 1;i<=m;i++)
				for (int j = 1;j<=n;j++)
					mc.AddEdge(i,j+m,INF,cost[g][j][i]);
			mins+=mc.Mincost(0,n+m+1);
		}
		printf("%d\n",mins);
	}
	//scanf("%d",&T);
	//printf("time=%.3lf",(double)clock()/CLOCKS_PER_SEC);
	return 0;
}


Description

Dearboy, a goods victualer, now comes to a big problem, and he needs your help. In his sale area there are N shopkeepers (marked from 1 to N) which stocks goods from him.Dearboy has M supply places (marked from 1 to M), each provides K different kinds of goods (marked from 1 to K). Once shopkeepers order goods, Dearboy should arrange which supply place provide how much amount of goods to shopkeepers to cut down the total cost of transport. 

It's known that the cost to transport one unit goods for different kinds from different supply places to different shopkeepers may be different. Given each supply places' storage of K kinds of goods, N shopkeepers' order of K kinds of goods and the cost to transport goods for different kinds from different supply places to different shopkeepers, you should tell how to arrange the goods supply to minimize the total cost of transport.

Input

The input consists of multiple test cases. The first line of each test case contains three integers N, M, K (0 < N, M, K < 50), which are described above. The next N lines give the shopkeepers' orders, with each line containing K integers (there integers are belong to [0, 3]), which represents the amount of goods each shopkeeper needs. The next M lines give the supply places' storage, with each line containing K integers (there integers are also belong to [0, 3]), which represents the amount of goods stored in that supply place. 

Then come K integer matrices (each with the size N * M), the integer (this integer is belong to (0, 100)) at the i-th row, j-th column in the k-th matrix represents the cost to transport one unit of k-th goods from the j-th supply place to the i-th shopkeeper. 

The input is terminated with three "0"s. This test case should not be processed.

Output

For each test case, if Dearboy can satisfy all the needs of all the shopkeepers, print in one line an integer, which is the minimum cost; otherwise just output "-1".

Sample Input

1 3 3   
1 1 1
0 1 1
1 2 2
1 0 1
1 2 3
1 1 1
2 1 1

1 1 1
3
2
20

0 0 0

Sample Output

4
-1


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值