思路:我们定义f(n)为n个人抽到的情况总数。对于第n个人,他要不抽中自己,即要抽中其他n-1个人,有n-1种可能,接下来讨论下,如果第n个人它抽中的人也抽中了第n个人,那么有f(n-2)种情况,如果第n个人抽中的人没有抽中第n个人,那么有f(n-1)可能,所以f(n)=(n-1)*(f(n-1)+f(n-2))。
要至少猜对一半的人,所以总可能数为C(n/2,n)*f(n/2)累加即可
#include<iostream>
#include<cstdio>
using namespace std;
#define LL long long
LL C(int n,int m)
{
LL u,d,i;
if (m>n/2)
m=n-m;
for (u=d=i=1;i<=m;i++)
{
u=u*(n-i+1);
d=d*i;
}
return u/d;
}
LL f[20];
int main()
{
f[0]=1;
f[1]=0;
f[2]=1;
for (int i = 3;i<=13;i++)
f[i]=(i-1)*(f[i-1]+f[i-2]);
int n;
while (scanf("%d",&n)!=EOF && n)
{
LL sum=0;
for (int i=0;i<=n/2;i++)
sum+=C(n,n-i)*f[i];
printf("%lld\n",sum);
}
}