hdu5744 Keep On Movin(水)

思路:如果每个字符出现次数都是偶数, 那么答案显然就是所有数的和. 对于奇数部分, 显然需要把其他字符均匀分配给这写奇数字符. 随便计算下就好了.


#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <cmath>
#include <cstdlib>
#include <ctime>

#define INF 0x3f3f3f3f
#define esp 1e-9
typedef long long LL;
using namespace std;
const int maxn = 100000 + 100;
int a[maxn];

int main()
{
    //freopen("in.txt","r",stdin);
    //freopen("out.txt","w",stdout);
    int ca, n;
    scanf("%d", &ca);
    while(ca--)
    {
        scanf("%d", &n);
        LL sum = 0, rec=0;
        for(int i=0;i<n;++i) 
        {
            scanf("%d", &a[i]);
            sum+=a[i];
            if(a[i]&1) rec++;
        }
        if(rec==0) printf("%d\n", sum);
        else 
        {
            sum -= rec;
            LL t = sum / rec;
            if(t%2==0) t++; 
            printf("%lld\n", t);
        }
    }
    return 0;
}


Problem Description
Professor Zhang has kinds of characters and the quantity of the  i -th character is  ai . Professor Zhang wants to use all the characters build several palindromic strings. He also wants to maximize the length of the shortest palindromic string.

For example, there are 4 kinds of characters denoted as 'a', 'b', 'c', 'd' and the quantity of each character is  {2,3,2,2}  . Professor Zhang can build {"acdbbbdca"}, {"abbba", "cddc"}, {"aca", "bbb", "dcd"}, or {"acdbdca", "bb"}. The first is the optimal solution where the length of the shortest palindromic string is 9.

Note that a string is called palindromic if it can be read the same way in either direction.
 

Input
There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:

The first line contains an integer  n   (1n105)  -- the number of kinds of characters. The second line contains  n  integers  a1,a2,...,an   (0ai104) .
 

Output
For each test case, output an integer denoting the answer.
 

Sample Input
  
  
4 4 1 1 2 4 3 2 2 2 5 1 1 1 1 1 5 1 1 2 2 3
 

Sample Output
  
  
3 6 1 3

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值