Bitset

一直知道这个东西但具体还真没用过,今天来学习一下。
Bitset具体也没什么麻烦的操作,无非是一些简单的位运算。
用几道题来看一下具体适用的情况:

BZOJ3687 简单题

题意:给定n个正整数,求所有子集和的异或和。 n < 1000 , ∑ a i < = 2000000 n<1000, \sum ai<=2000000 n<1000,ai<=2000000

思路:因为限制了所有元素和的上限,考虑对每种和求方案数,如用 f [ i ] f[i] f[i] 表示和为i的子集个数,显然可得 f [ i ] + = f [ i − a [ j ] ] f[i]+=f[i-a[j]] f[i]+=f[ia[j]],因为对于答案异或和来说我们只需知道每种和的奇偶性,考虑用bitset来表达值域内每种和的奇偶性。

#include<bits/stdc++.h>
using namespace std;

bitset<2000005> cnt;

int main(){
    ios::sync_with_stdio(false);
    cin.tie(0);

    cnt[0]=1;
    int n;
    cin>>n;
    for(int i=0;i<n;i++){
        int x;
        cin>>x;
        cnt^=cnt<<x;
    }
    int ans=0;
    for(int i=1;i<=2000000;i++){
        if(cnt[i]==1) ans^=i;
    }
    cout<<ans<<endl;
}

BZOJ4484 最小表示

题意:给定一个有向无环图,求最多可以删掉多少边使得连通性不发生改变。
N < = 30000 , M < = 100000 N<=30000,M<=100000 N<=30000,M<=100000

思路: 对于某一对点 ( x , y ) (x,y) (x,y) 路径之间的所有点,保证这条路径上连通性不发生改变,我们可以留下 ( x , y ) (x,y) (x,y) 的最长路,并将剩下的边都删掉。
或者考虑贪心一下,将原图拓扑排序之后,对于一个新加入的点 x x x,对于所有连入 x x x的边,我们先尝试保留另一端点拓扑序较大的点,如:对于两条边 ( u , x ) (u,x) (u,x) ( v , x ) (v,x) (v,x) t o p [ u ] < t o p [ v ] top[u]<top[v] top[u]<top[v],如果原图有点 u u u能到达点 v v v和点 x x x,那么我们在处理完点 v v v之后显然已经保证了 u , v u,v u,v的连通性,此时如果先加入边 ( v , x ) (v,x) (v,x),即可保证连通性不改变。
剩下的就是对于联通性的维护了,因为是有向图不能使用并查集,考虑用bitset维护对于每个点来说其他点能否到达。(不知道为什么网上其他的题解非要倒着来做这道题,也没有一个博客是给出理由的,正着连通性不是也可以维护吗= =)

#include<bits/stdc++.h>
using namespace std;

const int maxn=3e4+5;
bitset<maxn> b[maxn];
vector<int> E[maxn],E2[maxn];
int cnt[maxn],top[maxn],tip[maxn],tot=0;
queue<int> q;
bool cmp(int x,int y){
    return top[x]>top[y];
}

int main(){
    ios::sync_with_stdio(false);
    cin.tie(0);

    int n,m;
    cin>>n>>m;
    for(int i=0;i<m;i++){
        int x,y;
        cin>>x>>y;
        E[x].push_back(y);
        E2[y].push_back(x);
        cnt[y]++;
    }
    for(int i=1;i<=n;i++) if(cnt[i]==0) q.push(i);
    while(!q.empty()){
        int x=q.front();
        q.pop();
        top[x]=++tot;
        tip[tot]=x;
        for(auto i:E[x]){
            cnt[i]--;
            if(cnt[i]==0) q.push(i);
        }
    }
    int res=0;
    for(int i=1;i<=n;i++){
        int x=tip[i];
        b[x][x]=1;
        sort(E2[x].begin(),E2[x].end(),cmp);
        for(auto j:E2[x]){
            if(b[x][j]==0) b[x]|=b[j];
            else res++;
        }
    }
    cout<<res<<endl;
}

HDU6268
题意:给定一棵N个点的树,每个点有点权,求是否存在权值和分别为1~M的子图。
N < = 3000 , M < = 100000 N<=3000,M<=100000 N<=3000,M<=100000

思路:点分治能解决树的子图问题是一个基本套路了,接下来就是一个树形依赖背包问题,如果直接做的话复杂度是 O ( N M l o g N ) O(NMlogN) O(NMlogN),让人有点接受不了,因此考虑用bitset优化背包。

#include<bits/stdc++.h>
using namespace std;

const int maxn=3005,inf=0x3f3f3f3f;
bitset<100005> ans,dp[maxn];
vector<int> E[maxn];
int a[maxn];
int tip[3005],siz2[3005],tot;

int siz[maxn],maxs[maxn],vis[maxn];
int rt,all;
void dfs_rt(int x,int fa){
    siz[x]=1,maxs[x]=0;
    for(auto i:E[x]){
        if(vis[i] || i==fa) continue;
        dfs_rt(i,x);
        siz[x]+=siz[i];
        maxs[x]=max(maxs[x],siz[i]);
    }
    maxs[x]=max(maxs[x],all-siz[x]);
    if(maxs[x]<maxs[rt]) rt=x;
}
void dfs_dis(int x,int fa){
    tip[++tot]=x;
    siz2[x]=1;
    for(auto i:E[x]){
        if(vis[i] || i==fa) continue;
        dfs_dis(i,x);
        siz2[x]+=siz2[i];
    }
}
void dfz(int x){
    maxs[0]=inf;
    rt=0,all=siz[x];
    dfs_rt(x,x);
    vis[rt]=1;
    tot=0;
    dfs_dis(rt,rt);
    for(int i=1;i<=tot;i++) dp[i]=0;
    dp[tot+1]=1;
    for(int i=tot;i>=1;i--){
        int x=tip[i];
        dp[i]=dp[i+siz2[x]]|(dp[i+1]<<a[x]);
    }
    ans|=dp[1];
    for(auto i:E[rt]){
        if(!vis[i]) dfz(i);
    }
}

int main(){
    ios::sync_with_stdio(false);
    cin.tie(0);

    int T;
    cin>>T;
    while(T--){
        int n,m;
        cin>>n>>m;
        for(int i=1;i<=n;i++) vis[i]=0,E[i].clear();
        ans=0;
        for(int i=1;i<n;i++){
            int x,y;
            cin>>x>>y;
            E[x].push_back(y);
            E[y].push_back(x);
        }
        for(int i=1;i<=n;i++) cin>>a[i];
        siz[1]=n;
        dfz(1);
        for(int i=1;i<=m;i++) cout<<ans[i];
        cout<<'\n';
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值