CF 1144G 贪心(可dp)
题目链接:http://codeforces.com/contest/1144/problem/G
题意:给一个长度为n的数字串 要求将该数字串 不改变顺序 分出一个 严格递增 的序列和 严格递减 的序列
可以分出则输出YES并输出选择情况
不能则输出NO
n大小为 [ 1, 2e5 ]
思路:因为不能改变原数字串的顺序,从左到右遍历一遍即可。问题在于如何选出当前数字是放入递增序列还是递减序列。
一个显然的结论是我们要把尽可能大的数字放入递减序列,把尽可能小的数字放入递增序列
首先判断当前数字能放入哪个序列
如果都可放,则只需要比较当前数字和下一位大小关系,较小则放入递增序列,较大则放入递减序列
如果都不可放则输出NO
(DP的思路则是维护一个递增序列当前的最小值和递减序列当前的最大值)
下面是贪心思路的代码
#include<bits/stdc++.h>
using namespace std;
stack<int> q1,q2;
int qq2[200005];
int a[200005];
int main(){
int n,flag=1;
cin>>n;
for(int i=0;i<n;i++) cin>>a[i];
if(n==1){
cout<<"YES"<<endl;
cout<<1<<endl;
return 0;
}
for(int i=0;i<n-1;i++){
if((q1.empty()||a[i]>q1.top())&&(q2.empty()||a[i]<q2.top())){
if(a[i]>a[i+1]){
q2.push(a[i]);
qq2[i]=1;
}
else{
q1.push(a[i]);
}
}
else if(q1.empty()||a[i]>q1.top()){
q1.push(a[i]);
}
else if(q2.empty()||a[i]<q2.top()){
q2.push(a[i]);
qq2[i]=1;
}
else{
flag=0;
break;
}
}
if(flag){
if((!q1.empty()&&a[n-1]<=q1.top())&&(!q2.empty()&&a[n-1]>=q2.top())){
flag=0;
}
else{
if(q2.empty()||a[n-1]<q2.top()) qq2[n-1]=1;
}
}
if(flag){
cout<<"YES"<<endl;
for(int i=0;i<n;i++){
if(qq2[i]) cout<<1<<" ";
else cout<<0<<" ";
}
}
else{
cout<<"NO"<<endl;
}
}