[codevs 1033] 蚯蚓的游戏问题

[codevs 1033] 蚯蚓的游戏问题


题解:

首先每个点只能走一次,所以要靠拆点 (X -> Xi, Xj) 来限制每个点走的次数,容量为1,费用为食物量的相反数。
从源点向所有第一层的点 Xi 连一条容量为1,费用为0的边。
从最后一层的点 Xj 向汇点连一条容量为1,费用为0的边。
因为从源点向所有第一层的点连边不考虑蚯蚓个数,即没有限制最大流量,所以再建立一个超级汇点,从汇点到超级汇点连一条容量为蚯蚓条数,费用为0的边,求最小费用最大流,最后答案就是从源点到超级汇点的费用的相反数;也可以建立超级源点,从超级源点向源点连边限制流量。


代码:

耗时:19ms
内存:872B

#include<cstdio>
#include<iostream>
#include<vector>
#include<queue>
#include<algorithm>
using namespace std;

const int maxn = 3000 + 10;
const int INF = 1000000007;

int n, m, k, s, t, delta;
int map[maxn][maxn], ID[maxn][maxn];

struct Edge {
	int from, to, cap, flow, cost;
};

vector<Edge> edges;
vector<int> G[maxn];

void AddEdge(int from, int to, int cap, int cost) {
	edges.push_back((Edge){from, to, cap, 0, cost});
	edges.push_back((Edge){to, from, 0, 0, -cost});
	int sz = edges.size();
	G[from].push_back(sz-2);
	G[to].push_back(sz-1);
}

bool inq[maxn];
int a[maxn], d[maxn], p[maxn];

bool BellmanFord(int& flow, int& cost) {
	for(int i = s; i <= t; i++) d[i] = INF;
	memset(inq, 0, sizeof(inq));
	d[s] = 0; inq[s] = 1; p[s] = 0; a[s] = INF;
	
	queue<int> Q;
	Q.push(s);
	while(!Q.empty()) {
		int x = Q.front(); Q.pop();
		inq[x] = 0;
		for(int i = 0; i < G[x].size(); i++) {
			Edge& e = edges[G[x][i]];
			if(e.cap > e.flow && d[e.to] > d[x] + e.cost) {
				d[e.to] = d[x] + e.cost;
				p[e.to] = G[x][i];
				a[e.to] = min(a[x], e.cap-e.flow);
				if(!inq[e.to]) {
					Q.push(e.to);
					inq[e.to] = 1;
				}
			}
		}
	}
	if(d[t] == INF) return 0;
	flow += a[t];
	cost += d[t] * a[t];
	int x = t;
	while(x != s) {
		edges[p[x]].flow += a[t];
		edges[p[x]^1].flow -= a[t];
		x = edges[p[x]].from;
	}
	return 1;
}

void MincostMaxflow() {
	int flow = 0, cost = 0;
	while(BellmanFord(flow, cost));
	cout << -cost << endl;
}
 
void init() {
	cin >> n >> m >> k;
	for(int i = 1; i <= n; i++)
		for(int j = 1; j < m+i; j++) {
			ID[i][j] = ++t;
			cin >> map[i][j];
		}
	delta = t;
	t = t * 2 + 2;
	int _t = t-1;
	
	for(int x = 1; x <= n; x++)
		for(int y = 1; y < x+m; y++) {
			int& id = ID[x][y];
			AddEdge(id, id+delta, 1, -map[x][y]);
			if(x == 1) AddEdge(s, id, 2, 0);
			if(x == n) AddEdge(id+delta, _t, 2, 0); //key1
			else {
				AddEdge(id+delta, ID[x+1][y], 1, 0);
				AddEdge(id+delta, ID[x+1][y+1], 1, 0);
			}
		}
	AddEdge(_t, t, k, 0);
}

int main() {
    init();
    MincostMaxflow();
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值