[codevs 1033] 蚯蚓的游戏问题
题解:
首先每个点只能走一次,所以要靠拆点 (X -> Xi, Xj) 来限制每个点走的次数,容量为1,费用为食物量的相反数。
从源点向所有第一层的点 Xi 连一条容量为1,费用为0的边。
从最后一层的点 Xj 向汇点连一条容量为1,费用为0的边。
因为从源点向所有第一层的点连边不考虑蚯蚓个数,即没有限制最大流量,所以再建立一个超级汇点,从汇点到超级汇点连一条容量为蚯蚓条数,费用为0的边,求最小费用最大流,最后答案就是从源点到超级汇点的费用的相反数;也可以建立超级源点,从超级源点向源点连边限制流量。
代码:
耗时:19ms
内存:872B
#include<cstdio>
#include<iostream>
#include<vector>
#include<queue>
#include<algorithm>
using namespace std;
const int maxn = 3000 + 10;
const int INF = 1000000007;
int n, m, k, s, t, delta;
int map[maxn][maxn], ID[maxn][maxn];
struct Edge {
int from, to, cap, flow, cost;
};
vector<Edge> edges;
vector<int> G[maxn];
void AddEdge(int from, int to, int cap, int cost) {
edges.push_back((Edge){from, to, cap, 0, cost});
edges.push_back((Edge){to, from, 0, 0, -cost});
int sz = edges.size();
G[from].push_back(sz-2);
G[to].push_back(sz-1);
}
bool inq[maxn];
int a[maxn], d[maxn], p[maxn];
bool BellmanFord(int& flow, int& cost) {
for(int i = s; i <= t; i++) d[i] = INF;
memset(inq, 0, sizeof(inq));
d[s] = 0; inq[s] = 1; p[s] = 0; a[s] = INF;
queue<int> Q;
Q.push(s);
while(!Q.empty()) {
int x = Q.front(); Q.pop();
inq[x] = 0;
for(int i = 0; i < G[x].size(); i++) {
Edge& e = edges[G[x][i]];
if(e.cap > e.flow && d[e.to] > d[x] + e.cost) {
d[e.to] = d[x] + e.cost;
p[e.to] = G[x][i];
a[e.to] = min(a[x], e.cap-e.flow);
if(!inq[e.to]) {
Q.push(e.to);
inq[e.to] = 1;
}
}
}
}
if(d[t] == INF) return 0;
flow += a[t];
cost += d[t] * a[t];
int x = t;
while(x != s) {
edges[p[x]].flow += a[t];
edges[p[x]^1].flow -= a[t];
x = edges[p[x]].from;
}
return 1;
}
void MincostMaxflow() {
int flow = 0, cost = 0;
while(BellmanFord(flow, cost));
cout << -cost << endl;
}
void init() {
cin >> n >> m >> k;
for(int i = 1; i <= n; i++)
for(int j = 1; j < m+i; j++) {
ID[i][j] = ++t;
cin >> map[i][j];
}
delta = t;
t = t * 2 + 2;
int _t = t-1;
for(int x = 1; x <= n; x++)
for(int y = 1; y < x+m; y++) {
int& id = ID[x][y];
AddEdge(id, id+delta, 1, -map[x][y]);
if(x == 1) AddEdge(s, id, 2, 0);
if(x == n) AddEdge(id+delta, _t, 2, 0); //key1
else {
AddEdge(id+delta, ID[x+1][y], 1, 0);
AddEdge(id+delta, ID[x+1][y+1], 1, 0);
}
}
AddEdge(_t, t, k, 0);
}
int main() {
init();
MincostMaxflow();
return 0;
}