BZOJ-2618-凸多边形-CQOI2006

本文介绍如何使用模板计算多个多边形的重叠面积,包括直线操作、半平面交集等关键步骤。

描述

给一些多边形求重叠面积


分析

半平面交的模版

注意别少加了直线


#include 
#include 
#include 
#include 
using namespace std;

struct Point {
	double x, y;
	Point(double x=0, double y=0):x(x),y(y) { }
};

typedef Point Vector;

Vector operator + (const Vector& A, const Vector& B) { return Vector(A.x+B.x, A.y+B.y); }
Vector operator - (const Point& A, const Point& B) { return Vector(A.x-B.x, A.y-B.y); }
Vector operator * (const Vector& A, double p) { return Vector(A.x*p, A.y*p); }
double Dot(const Vector& A, const Vector& B) { return A.x*B.x + A.y*B.y; }
double Cross(const Vector& A, const Vector& B) { return A.x*B.y - A.y*B.x; }
double Length(const Vector& A) { return sqrt(Dot(A, A)); }
Vector Normal(const Vector& A) {
	double L = Length(A);
	return Vector(-A.y/L, A.x/L);
}

double PolygonArea(vector p) {
	int n = p.size();
	double area = 0;
	for(int i = 1; i < n-1; i++)
		area += Cross(p[i]-p[0], p[i+1]-p[0]);
	return area/2;
}

// 有向直线。它的左边就是对应的半平面
struct Line {
	Point P;    // 直线上任意一点
	Vector v;   // 方向向量
	double ang; // 极角,即从x正半轴旋转到向量v所需要的角(弧度)
	Line() {}
	Line(Point P, Vector v):P(P),v(v) {
		ang = atan2(v.y, v.x);
	}
	bool operator < (const Line& L) const {
		return ang < L.ang;
	}
};

// 点p在有向直线L的左边(线上不算)
bool OnLeft(const Line& L, const Point& p) {
	return Cross(L.v, p-L.P) > 0;
}

// 二直线交点,假定交点惟一存在
Point GetLineIntersection(const Line& a, const Line& b) {
	Vector u = a.P-b.P;
	double t = Cross(b.v, u) / Cross(a.v, b.v);
	return a.P+a.v*t;
}

const double INF = 1e8;
const double eps = 1e-6;

// 半平面交主过程
vector HalfplaneIntersection(vector L) {
	int n = L.size();
	sort(L.begin(), L.end()); // 按极角排序

	int first, last;         // 双端队列的第一个元素和最后一个元素的下标
	vector p(n);      // p[i]为q[i]和q[i+1]的交点
	vector q(n);       // 双端队列
	vector ans;       // 结果

	q[first=last=0] = L[0];  // 双端队列初始化为只有一个半平面L[0]
	for(int i = 1; i < n; i++) {
		while(first < last && !OnLeft(L[i], p[last-1])) last--;
		while(first < last && !OnLeft(L[i], p[first])) first++;
		q[++last] = L[i];
		if(fabs(Cross(q[last].v, q[last-1].v)) < eps) { // 两向量平行且同向,取内侧的一个
			last--;
			if(OnLeft(q[last], L[i].P)) q[last] = L[i];
		}
		if(first < last) p[last-1] = GetLineIntersection(q[last-1], q[last]);
	}
	while(first < last && !OnLeft(q[first], p[last-1])) last--; // 删除无用平面
	if(last - first <= 1) return ans; // 空集
	p[last] = GetLineIntersection(q[last], q[first]); // 计算首尾两个半平面的交点

	// 从deque复制到输出中
	for(int i = first; i <= last; i++) ans.push_back(p[i]);
	return ans;
}

int main() {
	int n, m;
	scanf("%d", &n);
	vector L;
	for(int i = 0; i < n; i++) {
		vector p;
		scanf("%d", &m);
		for(int j = 0; j < m; j++) {
			double x, y;
			scanf("%lf %lf", &x, &y);
			p.push_back(Point(x, y));
			if(j) L.push_back(Line(p[j], p[j]-p[j-1]));
		}
		L.push_back(Line(p[m-1], p[0]-p[m-1]));
	}
	vector p = HalfplaneIntersection(L);
	double ans = PolygonArea(p);
	printf("%.3lf", ans);
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值