动态规划应用--最长递增子序列 LeetCode 300

1. 问题描述

有一个数字序列包含n个不同的数字,如何求出这个序列中的最长递增子序列长度?比如2,9,3,6,5,1,7这样一组数字序列,它的最长递增子序列就是2,3,5,7,所以最长递增子序列的长度是4。
https://leetcode-cn.com/problems/longest-increasing-subsequence/

2. 解题思路

2.1 动态规划

  • 假设在包含 i-1 下标数字时的最大递增子序列长度为 maxLen(i-1),那么下标为 i 时的 maxLen(i)需要考虑前面所有的状态,
  • 如果 a[j] < a[i] (0 <= j < i),则 maxlen[i] = max(maxlen[j]+1 | (0 <= j < i));
  • 如果 a[j] >= a[i] (0 <= j < i),则 maxlen[i] = 1;

借一张动图说明
在这里插入图片描述
在这里插入图片描述

class Solution 
{
public:
    int lengthOfLIS(vector<int>& nums) 
    {
        int n = nums.size();
        if(n == 0)
            return 0;
        int maxlen[n], ans;
        int i, j;
        for(i = 0; i < n; ++i)
            maxlen[i] = 1;//至少为1,自己
        for(i = 1; i < n; ++i)
        {
        	ans = 1;
            for(j = 0; j < i; ++j)
            {
            	if(nums[i] > nums[j] && maxlen[j]+1 > ans)
            	{
            		ans = maxlen[j]+1;
            		maxlen[i] = ans;
            	} 
        	}
        }
        for(ans = 1, i = 0; i < n; ++i)
        {
        	if(maxlen[i] > ans)//取最大值
        		ans = maxlen[i];
        }
        return ans;
    }
};
class Solution {	//2020.3.14
public:
    int lengthOfLIS(vector<int>& nums) {
        if(nums.size() == 0)
            return 0;
        int i, j, n = nums.size(),maxlen = 1;
        vector<int> dp(n,1);
        for(i = 1; i < n; ++i)
        {
            for(j = i-1; j >= 0; --j)
            {
                if(nums[i] > nums[j])
                    dp[i] = max(dp[i], dp[j]+1);
            }
            maxlen = max(maxlen, dp[i]);
        }
        return maxlen;
    }  
};

2.2 二分查找

  • 参考官方的解答
  • dp[i] 表示长度为 i+1 的子序的最后一个元素的 最小数值
  • 遍历每个 nums[i],找到其在dp数组中的位置(大于等于 nums[i] 的第一个数),将他替换成较小的

以输入序列 [0, 8, 4, 12, 2] 为例:

第一步插入 0,dp = [0]

第二步插入 8,dp = [0, 8]

第三步插入 4,dp = [0, 4]

第四步插入 12,dp = [0, 4, 12]

第五步插入 22,dp = [0, 2, 12]

class Solution {
public:
    int lengthOfLIS(vector<int>& nums) {
        if(nums.size() == 0)
            return 0;
        int i, l, r, n = nums.size(), maxlen = 1, idx;
        vector<int> dp(n);
        dp[0] = nums[0];
        for(i = 1; i < n; ++i)//遍历每个数
        {
            l = 0, r = maxlen-1;
            idx = bs(dp,l,maxlen,nums[i],maxlen);
			//二分查找nums[i] 在dp中的位置
            if(idx == maxlen)//nums[i] 是最大的
            {
                dp[idx] = nums[i];
                maxlen++;
            }
            else//不是最大的,更新 dp[i] 里的数为较小的
                dp[idx] = min(dp[idx], nums[i]);
        }
        return maxlen;
    }  

    int bs(vector<int> &dp, int l, int r, int& target, int& maxlen)
    {	//二分查找nums[i] 在dp中的位置, 第一个大于等于 nums[i] 的
        int mid;
        while(l <= r)
        {
            mid = l + ((r-l)>>1);
            if(dp[mid] < target)
                l = mid+1;
            else
            {
                if(mid == 0 || dp[mid-1] < target)
                    return mid;
                else
                    r = mid-1;
            }
        }
        return maxlen;//没有找到,nums[i] 最大,放最后
    }
};
  • 基于上面的想法,直接用 treeset 可以简化代码
class Solution {
public:
    int lengthOfLIS(vector<int>& nums) {
        if(nums.size() == 0)
            return 0;
        set<int> s;
        for(auto& n : nums)
        {
            if(s.count(n))
                continue;
            else
            {
                auto it = s.upper_bound(n);//n的上界
                if(it == s.end())//没有比我大的
                    s.insert(n);
                else//有比我大的
                {
                    s.erase(it);//删除比我大的
                    s.insert(n);//换成我
                }
            }
        }
        return s.size();
    }
};

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Michael阿明

如果可以,请点赞留言支持我哦!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值