POJ 3783 鹰蛋问题,非常好的DP题目

题目大意:N个蛋M层楼,问至少需要多少次数可以精确确定蛋会在几楼打碎,打碎的蛋不能再用,没打碎的蛋可以继续试验。

很多人第一时间会想到二分,其实并不是,比如1个蛋100层,直接从50层开始扔,则直接碎掉了,肯定是不行的,唯一的方法就是从一楼一层层往上试。

比如现在还剩i个蛋有j层,想知道这么一个状态所需要的次数是多少,用f[i][j]表示当前状态。

暴力枚举现在的第i个蛋扔在第k层(k是暴力寻找的),如果碎了,则现在只有i-1个蛋,我们需要在下面的k-1的层数中确定次数,状态为f[i-1][k-1],如果没碎,则我们还剩i个蛋,我们需要在上面的j-k层中找到答案,状态为f[i][j-k],由于是至少的次数,所以必定由f[i-1][k-1]和f[i][j-k]这两种转移过来,这两者需要取max(表示最不幸的情况)。
至于我们想求的f[i][j],枚举k这么多个状态时,需要找到最好的一个答案,所以再对枚举的所有(min(f[i-1][k-1],f[i][j-1])+1)取max。
最后f[N][M]就是答案。
时间复杂度为O(N*M^2)。

核心代码:

for(int i=2;i<=50;i++)
	for(int j=1;j<=1000;j++){
		min1=100000000;
		for(int k=1;k<=j;k++)
			min1=min(min1,max(f[i-1][k-1],f[i][j-k])+1);
		f[i][j]=min1;
	}

完整代码:

#include<iostream>
using namespace std;
int f[60][1100];
int min1,test,t,x,y,z;
int main(){
	for(int i=0;i<=1000;i++)f[1][i]=i;
	for(int i=2;i<=50;i++)
		for(int j=1;j<=1000;j++){
			min1=100000000;
			for(int k=1;k<=j;k++)
				min1=min(min1,max(f[i-1][k-1],f[i][j-k])+1);
			f[i][j]=min1;
		}
	cin>>test;
	for(int t=1;t<=test;t++){
		cin>>x>>y>>z;
		cout<<x<<" "<<f[y][z]<<endl;
	}
	return 0;
}

参考视频:https://www.bilibili.com/video/BV1KE41137PK

方法二:
如果只有一组数据,则有个更快的方法,用f[i][j]表示当前用了i次的情况下用j个蛋最多能确定多少层,状态转移是f[i][j]=f[i-1][j-1]+f[i-1][j]+1,时间复杂度为O(N*M)。

核心代码:

for(int i=1;i<=m;i++){
	for(int j=1;j<=n;j++)
		f[i][j]=f[i-1][j-1]+f[i-1][j]+1;
	if(f[i][n]>=m){
		cout<<x<<" "<<i<<endl;
		break;
	}
}

完整代码:

#include<iostream>
using namespace std;
int test,x,n,m;
int f[1100][60];
int main(){
	cin>>test;
	for(int t=1;t<=test;t++){
		cin>>x>>n>>m;
		for(int i=1;i<=m;i++){
			for(int j=1;j<=n;j++)
				f[i][j]=f[i-1][j-1]+f[i-1][j]+1;
			if(f[i][n]>=m){
				cout<<x<<" "<<i<<endl;
				break;
			}
		}
	}
	return 0;
}

当然还有更快的sqrt(n)方法,参考国家队论文
算法合集之《从《鹰蛋》一题浅析对动态规划算法的优化》
论文地址:https://wenku.baidu.com/view/7d57940ef12d2af90242e6ac.html
在这里插入图片描述

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 给出一个$n\times m$的矩阵,每个位置上有一个非负整数,代表这个位置的海拔高度。一开始时,有一个人站在其中一个位置上。这个人可以向上、下、左、右四个方向移动,但是只能移动到海拔高度比当前位置低或者相等的位置上。一次移动只能移动一个单位长度。定义一个位置为“山顶”,当且仅当从这个位置开始移动,可以一直走到海拔高度比它低的位置上。请问,这个矩阵中最多有多少个“山顶”? 输入格式 第一行两个整数,分别表示$n$和$m$。 接下来$n$行,每行$m$个整数,表示整个矩阵。 输出格式 输出一个整数,表示最多有多少个“山顶”。 样例输入 4 4 3 2 1 4 2 3 4 3 5 6 7 8 4 5 6 7 样例输出 5 算法1 (递归dp) $O(nm)$ 对于这道题,我们可以使用递归DP来解决,用$f(i,j)$表示以$(i,j)$为起点的路径最大长度,那么最后的答案就是所有$f(i,j)$中的最大值。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码 算法2 (动态规划) $O(nm)$ 动态规划的思路与递归DP类似,只不过转移方程和实现方式有所不同。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值