Python学习练手小项目:Python使用腾讯云-短信服务发送手机短信

本文介绍了如何使用Python结合腾讯云服务发送手机短信。首先,通过pip安装qcloudsms_py库,注册腾讯云账号并获取SDK AppID和App Key。接着,申请短信签名和正文模板,注意腾讯云短信服务已不再免费。然后,提供了代码实现的简述,并鼓励读者查阅官方文档以了解更多API用法。最后,讨论了此功能可能的应用场景,如脚本触发、事务提醒等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、准备工作


  • pip install qcloudsms_py

1.注册腾讯云账号
2.在产品列表内找到短信,在短信内添加应用
添加应用

3.获取对应的SDK AppID 和 App Key
获取应用信息
4.配置短信内容

  • 注:需先申请“短信签名”和“短信正文”,按照要求填写申请即可,腾讯云的审核效率还是很快的,一般在1-2个小时内就会有结果
    短信内容配置

注:腾讯云的短信服务现在好像也不免费了,之前每个月还会赠送100条免费短信额度。
总结:准备工作准备内容:SDK AppID、App Key、应用签名、短信正文模板ID

2、代码实现

# -*- coding: utf-8 -*-

"""
@author: rzb
@software: PyCharm
@file: sms_qcloud.py
@time: 2019/8/21 11:54
"""

from qcloudsms_py import SmsSingleSender
from qcl
### 如何在腾讯云服务器部署 DeepSpeak 深度学习语音合成模型 #### 选择合适的操作系统 对于腾讯云轻量应用服务器,建议使用 CentOS 7.6 64bit 版本作为操作系统的首选[^1]。该版本稳定可靠,适合用于搭建深度学习环境。 #### 登录到服务器并配置基础环境 登录至已创建好的实例,通过SSH客户端(如 MobaXterm)连接,并输入给定的密码完成首次访问[^3]: ```bash ssh root@your_server_ip_address ``` #### 安装必要的依赖库和工具链 为了支持 TensorFlow 和其他 Python 库,在开始之前需先更新 yum 软件包管理器,并安装基本开发组件: ```bash yum update -y && yum install epel-release -y yum groupinstall "Development Tools" -y yum install python3-pip git wget unzip -y pip3 install --upgrade pip setuptools wheel ``` #### 构建 Anaconda 环境来运行 Jupyter Notebook 考虑到 DeepSpeech 的需求,构建一个专门针对该项目优化过的 conda environment 是明智之举。下载 Miniconda 并按照官方文档说明进行安装: ```bash wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh bash Miniconda3-latest-Linux-x86_64.sh -b -p $HOME/miniconda export PATH="$HOME/miniconda/bin:$PATH" source ~/.bashrc ``` 接着创建一个新的 Conda 环境 `deepspeak-env` 来隔离不同项目的依赖关系: ```bash conda create --name deepspeak-env python=3.9 conda activate deepspeak-env ``` #### 获取 DeepSpeech 仓库中的源码文件 如果熟悉 Git 命令,则可以直接克隆 GitHub 上托管的 DeepSpeech 存储库;如果不了解这些命令的话,也可以手动下载 ZIP 文件解压上传到服务器中[^2]: ```bash git clone https://github.com/mozilla/DeepSpeech.git ~/DeeepSpeech cd ~/DeepSpeech ``` 或者直接从浏览器下载压缩包并通过 FTP 或 SFTP 协议传输至上一步骤提到的位置。 #### 设置 GPU 加速 (可选) 如果有计划利用 NVIDIA 显卡加速训练过程,那么还需要额外安装 CUDA Toolkit 及 cuDNN SDK。具体步骤请参照 Nvidia 开发者网站上的指导手册执行相应版本的选择与安装。 #### 编译预处理脚本所需的 C++ 组件 根据项目 Readme.md 中给出指示编译 native client(C++)部分,这通常涉及到 Bazel build system : ```bash bazel build -c opt //native_client:libdeepspeech.so \ --define=runtime_atlas=true \ --copt=-mavx --linkopt=-lm ``` #### 启动 Jupyter Notebook 进行交互式编程 最后一步就是启动 jupyter notebook 实现远程可视化调试功能了。确保防火墙允许 HTTP 请求到达指定端口(默认情况下为8888),之后就可以愉快地玩耍啦! ```bash jupyter notebook --no-browser --port=8888 --allow-root & ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值