题目:
Given a binary tree, determine if it is height-balanced.
For this problem, a height-balanced binary tree is defined as:
a binary tree in which the depth of the two subtrees of every node never differ by more than 1.
Example 1:Given the following tree
[3,9,20,null,null,15,7]
:3 / \ 9 20 / \ 15 7
Return true.
Example 2:
Given the following tree[1,2,2,3,3,null,null,4,4]
:1 / \ 2 2 / \ 3 3 / \ 4 4
Return false.
解释:
判断一棵树是不是平衡二叉树,在dfs的过程中,如果子树是平衡二叉树,返回深度,否则返回-1。
python代码:
# Definition for a binary tree node.
# class TreeNode(object):
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution(object):
def isBalanced(self, root):
"""
:type root: TreeNode
:rtype: bool
"""
def TreeDepth(root):
left_depth,right_depth=0,0
if root.left:
left_depth=TreeDepth(root.left)
if root.right:
right_depth=TreeDepth(root.right)
if left_depth==-1 or right_depth==-1 or abs(left_depth-right_depth)>1:
return -1
return max(left_depth,right_depth)+1
depth=0
if root:
depth=TreeDepth(root);
return depth!=-1
c++代码:
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
bool isBalanced(TreeNode* root) {
int depth=0;
if (root)
depth=TreeDepth(root);
return depth!=-1;
}
int TreeDepth(TreeNode* root)
{
int left_depth=0,right_depth=0;
if (root->left)
left_depth=TreeDepth(root->left);
if (root->right)
right_depth=TreeDepth(root->right);
if (left_depth==-1 || right_depth==-1 || abs(left_depth-right_depth)>1)
return -1;
return max(left_depth,right_depth)+1;
}
};
总结:
如果子树是平衡二叉树,返回深度,否则返回-1。