数论——欧几里得算法

1.欧几里得简介

    欧几里得(希腊文:Ευκλειδης ,约公元前330年—公元前275年),古希腊数学家,被称为“几何之父”。他最著名的著作《几何原本》是欧洲数学的基础,在书中他提出五大公设。欧几里得的《几何原本》被广泛的认为是历史上最成功的教科书。欧几里得也写了一些关于透视、圆锥曲线、球面几何学及数论的作品。

2.欧几里得算法

欧几里得算法用于:求解a和b的最大公约数
最大公约数英文为:Greatest Common Divisor,故缩写为GCD。
a mod b:a除以b的余数
注:GCD(a,b)表示a和b的最大公约数
    r = a mod b,即 r 为 a 除以 b 的余数

欧几里得算法结论:GCD(a,b) = GCD(b,a mod b)

3.欧几里得算法证明

注意:d | r 记为d可整除r,区别 “除” 和 “除以”

4.欧几里得算法代码实现(C/C++)

int GCD(int a,int b)
{
	if(b==0)
		return a;
	return GCD(b,a%b);
}

5.参考

百度百科

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值