【Flink】Flink如何快速定位SubTask在哪台机器哪个进程中执行

当Flink的SubTask处理速度慢或CheckPoint时间长时,需要快速定位到具体执行的机器和进程。通过Flink的WebUI和REST API,可以获取SubTask的vertice id,然后找到其所在的服务器和端口。在目标机器上执行特定命令,可以获取TaskManager的PID,以便进行进一步的诊断分析。
摘要由CSDN通过智能技术生成

在这里插入图片描述

1.概述

转载:Flink如何快速定位SubTask在哪台机器哪个进程中执行

痛点:假如我们在FLink的WebUI Metrics页面发现有一个SubTask每秒处理的数据明显比其他低,又或者在CheckPoint页面,发现有一个SubTask的CheckPoint时间明显比较长。有时候定位问题需要到TaskManager所在机器找到相应的Java进程使用jmap分析进程的内存使用或者jstack分析线程信息。现在问题来了,如果你知道某个SubTask已经有问题了,怎么快速找到该SubTask到底在哪台机器,哪个进程呢?

在这里插入图片描述
图1中可以看出Task “Flat Map -> Sink: Kafka Topic : pv-event”对应的SubTask11相对其他SubTask处理速率比较慢

在这里插入图片描述
图2中可以看出Task “Flat Map -> Sink: Kafka Topic : pv-event”对应的SubTask1相对其他SubTask执行CheckPoint很慢。这里有一点比较坑,Flink内所有的地方SubTask下标都是从0开始,但是这个CheckPoint页面,SubTask从1开始,所以这里显示的是SubTask1有问题,实际上是Task “Flat Map -> Sink: Kafka Topic : pv-event”的SubTask0有问题,这里我看了接口返回的数据也是从0开始,但是WebUI显示的时候进行了加1,我们解决问题的时候,必须要手动减1操作。

接下来,教大家如何找到Task “Flat Map -> Sink: Kafka Topic : pv-event”对应的SubTask1在哪台机器的哪个进程执行。首先必须知道rest api的host和port,也就是我们要访问api的前缀,进入flink Web UI后直接复制前缀即可。后面讲述用到这个前缀的地方,我都使用${prefix}来代替

在这里插入图片描述
如果yarn模式运行,前缀格式可能是以下proxy格式

http://yarn-resource-manager-host:port/proxy/application_1564059672019_0612

在这里插入图片描述
访问rest api获取Task “Flat Map -> Sink: Kafka Topic : pv-event”的vertice id

api格式:(这里的jid可以从job的页面看到,图2 CheckPoint时长页面左上角红圈已标注)
${prefix}/jobs/${jid}

示例:
${prefix}/jobs/96664f69ec9676bbe47dd66119b1ab82

访问rest api会返回json,我们可以看到返回两个Task的vertice id

在这里插入图片描述
获取对应task的SubTask所在机器和端口

api格式:
${prefix}/jobs/${jid}/vertices/${vertice id}

api示例:
${prefix}/jobs/96664f69ec9676bbe47dd66119b1ab82/vertices/8385f8a9697de59d3b3113ecefb3e969

在这里插入图片描述

图中表示Task “Flat Map -> Sink: Kafka Topic : pv-event”的SubTask1在dn218这台机器,对应的端口号20131

登录对应的服务器,执行 lsof -i tcp:${port} 即可返回相应TaskManager进程的pid

lsof -i tcp:20131
COMMAND   PID USER   FD   TYPE     DEVICE SIZE/OFF NODE NAME
java    65056 yarn  211u  IPv4 2630110175      0t0  TCP dn218

可以看到yarn用户起的任务,所以如果想对该pid执行jmap或者jstack时,一定在切到yarn用户下

su yarn
cd ~
jmap -dump:format=b,file=heapdump.phrof ${pid}
jstack ${pid} > thread.log
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值